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BÉZOUT’S INEQUALITY FOR REAL POLYNOMIALS

ARKADIUSZ PŁOSKI AND MACIEJ SĘKALSKI

Abstract. Let F (X,Y ), G(X,Y ) be polynomials of degrees m,n > 0 respec-
tively. We prove, that the set {(x, y) ∈ R2 : F (x, y) = G(x, y) = 0} has at
most mn connected components.

Classical Bézout’s theorem says that the number of complex solutions of a system
of n complex polynomial equations with n variables does not exceed the product of
degrees of the polynomials, provided it is finite. An elementary proof of the theorem
for n = 2 can be found in [3], chapter X, §3.2. For real polynomials such a bound
doesn’t hold; here is the example given by Fulton [1]: the system of equations

m∏
i=1

(x− i)2 +
m∏
j=1

(y − j)2 = 0, xz = 0, yz = 0

hasm2 solutions in R3, while the product of equations degrees is equal to 2m·2·2 =
8m < m2 for m > 8.

Our aim is to show that there is no such an example in the case of two polynomial
equations with two unknowns.

We will prove the following

Theorem. If polynomials F (X,Y ), G(X,Y ) ∈ R[X,Y ] have degrees m,n > 0
respectively, then the set of solutions of a system of equations F (X,Y ) = G(X,Y ) =
0 has at most mn connected components.
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The proof is based on two lemmas

Lemma 1. If polynomials F,G with degrees m,n > 0 respectively are coprime then
the system F (X,Y ) = G(X,Y ) = 0 has at most m · n real solutions.

Proof: If F,G are coprime in R[X,Y ] then they are also coprime in C[X,Y ]; hence
the system F = G = 0 has at most mn solutions in C2 and in particular in R2. �

Lemma 2. If P ∈ R[X,Y ] is not constant then the set {(x, y) : P (x, y) = 0} has
at most (degP )2 connected components.

Proof. It is sufficient to prove Lemma 2 for P irreducible.

In fact: suppose that P = P1 · · · · · Ps where Pi, i = 1, . . . , s are irreducible and
assume that Lemma 2 is true for every Pi. Then the number of components of the
set P = 0 does not exceed the sum of the numbers of component of the sets Pi = 0.
Hence the number of connected components of the set P = 0 is less than or equal
to
∑s
i=1(degPi)2 ¬ (

∑s
i=0 degPi)

2 = (degP )2.

Suppose that P is an irreducible polynomial of positive degree and take a point
(a, b) such that P (a, b) 6= 0. Put Q(X,Y ) = (X − a)2 + (Y − b)2 and consider the
Jacobian determinant J(P,Q) of polynomials P,Q.

If J(P,Q) = 2(Y − b)PX − 2(X − b)QY 6= 0 in R[X,Y ] then the polynomials P ,
J(P,Q) are coprime otherwise we would have J(P,Q) = const P since P is prime,
which is impossible because P (a, b) 6= 0 and J(P,Q)(a, b) = 0.

We will show that any connected component M of the set P = 0 intersects
the curve J(P,Q) = 0. Let (x0, y0) be a point of M in which the polynomial
Q reaches its minimum on M . If (x0, y0) ∈ M is a critical point of P then of
course J(P,Q)(x0, y0) = 0. If it is not a critical point then J(P,Q)(x0, y0) = 0 by
the method of Lagrange multipliers, [2], p. 152. Hence the number c of connected
components of the set P = 0 is not greater than the number of solutions of the
system P = J(P,Q) = 0. We have c ¬ (degP )2 by Lemma 1.

Let us consider the case J(P,Q) = 0 in R[X,Y ]. We have

Property. If P ∈ R[X,Y ] and J(P,Q) = 0 in R[X,Y ] then P (X,Y ) =
P0(Q(X,Y )) for some P0(T ) ∈ R[T ].

Proof of the property. Put U = X − a, V = Y − b. Then the assumption of the
property can be rewritten in the form J(P,Q) = 2(V PU − UPV ) = 0 in R[U, V ].
Let us put DF = V FU − UFV for any polynomial F ∈ R[U, V ].

We have

1) if F (U, V ) is a homogeneous polynomial of degree n > 0 than DF also,
2) if F = (U2 + V 2)kF̃ then DF = (U2 + V 2)kDF̃ ,
3) if F 6= const is a homogeneous form and DF = 0 then U2 + V 2 divides F .
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To check 3) let us note that the conditions V FU −UFV = 0 and UFU +V FV =
(degF )F imply the equality (U2+V 2)FU = (degF )UF . Since polynomials U2+V 2,
(degF )U are coprime we have that U2 + V 2 divides F .

Now let P ∈ R[U, V ] be such that DP = 0. If P =
∑
Pj with Pj homogeneous

of degree j then DPj = 0. The conditions 2) and 3) give that Pj = cj(U2 + V 2)
j
2

for j even and Pj = 0 for j odd.

To complete the proof of Lemma 2 in the case J(P,Q) = 0 in R[X,Y ] note
that by Property we have P = P0(Q), where P0 is a polynomial of one variable.
Therefore the set P = 0 consists of a finite number of circles. The number of circles
does not exceed degP0 < degP . �

Proof of Theorem. If F,G are coprime then Theorem is true by Lemma 1. Suppose
that P = GCD(F,G) is of positive degree. Then

{F = G = 0} = {F
P

=
G

P
= 0} ∪ {P = 0}.

Put k = degP . By Lemma 1 the set {FP = G
P = 0} has at most (m − k)(n − k)

connected components. Hence the set under consideration has at most

(m− k)(n− k) + k2 = mn− k(m− k + n− k) ¬ mn
connected components. �
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