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BEZOUT’S INEQUALITY FOR REAL POLYNOMIALS

ARKADIUSZ PLOSKI AND MACIEJ SEKALSKI

ABSTRACT. Let F(X,Y), G(X,Y) be polynomials of degrees m,n > 0 respec-
tively. We prove, that the set {(z,y) € R? : F(z,y) = G(x,y) = 0} has at
most mn connected components.

Classical Bézout’s theorem says that the number of complex solutions of a system
of n complex polynomial equations with n variables does not exceed the product of
degrees of the polynomials, provided it is finite. An elementary proof of the theorem
for n = 2 can be found in [3], chapter X, §3.2. For real polynomials such a bound
doesn’t hold; here is the example given by Fulton [1]: the system of equations

m

H(x_2)2+H<y_j)2:O, .’EZ:O’ yz:()

i=1 j=1

has m? solutions in R3, while the product of equations degrees is equal to 2m-2-2 =
8m < m? for m > 8.

Our aim is to show that there is no such an example in the case of two polynomial
equations with two unknowns.

We will prove the following

Theorem. If polynomials F(X,Y), G(X,Y) € R[X,Y] have degrees m,n > 0
respectively, then the set of solutions of a system of equations F(X,Y) = G(X,Y) =
0 has at most mn connected components.
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The proof is based on two lemmas

Lemma 1. If polynomials F, G with degrees m,n > 0 respectively are coprime then
the system F(X,Y) = G(X,Y) =0 has at most m - n real solutions.

Proof: If F,G are coprime in R[X, Y] then they are also coprime in C[X,Y]; hence
the system F = G = 0 has at most mn solutions in C? and in particular in R?. [J

Lemma 2. If P € R[X,Y] is not constant then the set {(x,y) : P(xz,y) = 0} has
at most (deg P)? connected components.

Proof. Tt is sufficient to prove Lemma 2 for P irreducible.

In fact: suppose that P = Py - --- - P; where P;, i = 1,...,s are irreducible and
assume that Lemma 2 is true for every P;. Then the number of components of the
set P = 0 does not exceed the sum of the numbers of component of the sets P, = 0.
Hence the number of connected components of the set P = 0 is less than or equal
to Yo (deg ) < (S, deg Pr)” = (deg ).

Suppose that P is an irreducible polynomial of positive degree and take a point
(a,b) such that P(a,b) # 0. Put Q(X,Y) = (X —a)? + (Y — b)? and consider the
Jacobian determinant J(P, Q) of polynomials P, Q.

If J(P,Q) =2(Y —b)Px —2(X —b)Qy # 0 in R[X,Y] then the polynomials P,
J(P,Q) are coprime otherwise we would have J(P,Q) = const P since P is prime,
which is impossible because P(a,b) # 0 and J(P,Q)(a,b) = 0.

We will show that any connected component M of the set P = 0 intersects
the curve J(P,Q) = 0. Let (x0,y0) be a point of M in which the polynomial
@ reaches its minimum on M. If (xzg,y0) € M is a critical point of P then of
course J(P,Q)(xo,yo) = 0. If it is not a critical point then J(P,Q)(zo,yo) = 0 by
the method of Lagrange multipliers, [2], p. 152. Hence the number ¢ of connected

components of the set P = 0 is not greater than the number of solutions of the
system P = J(P,Q) = 0. We have ¢ < (deg P)? by Lemma 1.

Let us consider the case J(P, Q) = 0 in R[X,Y]. We have

Property. If P € R[X,Y] and J(P,Q) = 0 in R[X,Y] then P(X,Y) =
Py(Q(X,Y)) for some Py(T) € R[T].

Proof of the property. Put U = X —a, V =Y — b. Then the assumption of the
property can be rewritten in the form J(P,Q) = 2(VPy — UPy) = 0 in R[U,V].
Let us put DF = VFy — UFy for any polynomial F' € R[U, V].

We have

1) if F(U,V) is a homogeneous polynomial of degree n > 0 than DF" also,
2) if F = (U? + V2)*F then DF = (U? + V2)*DF,
3) if F' # const is a homogeneous form and DF = 0 then U? + V2 divides F.
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To check 3) let us note that the conditions VFy —UFy =0 and UFy + VFy =
(deg F)F imply the equality (U%+V?2)Fy = (deg F)UF. Since polynomials U2+V?2,
(deg F)U are coprime we have that U2 + V?2 divides F.

Now let P € R[U, V] be such that DP = 0. If P = ) P; with P; homogeneous
of degree j then DP; = 0. The conditions 2) and 3) give that P; = ¢;(U? + V?)3
for j even and P; = 0 for j odd.

To complete the proof of Lemma 2 in the case J(P,Q) = 0 in R[X,Y] note
that by Property we have P = Py(Q), where Py is a polynomial of one variable.
Therefore the set P = 0 consists of a finite number of circles. The number of circles
does not exceed deg Py < deg P. O

Proof of Theorem. If F,G are coprime then Theorem is true by Lemma 1. Suppose
that P = GCD(F, G) is of positive degree. Then
F G
F=G=0}={==—==0}U{P =0}

{ b= =2=0u(P=0}
Put k = deg P. By Lemma 1 the set {5 = & = 0} has at most (m — k)(n — k)
connected components. Hence the set under consideration has at most

(m—En—k)+k =mn—km—-k+n—k)<mn

connected components. O
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