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ABSTRACT. Abhyankar and Moh achieved a major breakthrough in the global
geometry of the affine plane with their papers [2] and [3]. The aim of this
expository article is to provide an introduction to the Abhyankar-Moh theory.
‘We base our approach on the local theory of algebraic plane curves explained in
our previous paper [18], where we reproved the basic properties of approximate
roots without resorting to Puiseux series. We pass then to the projective closure
of the affine plane in order to prove the Embedding Line Theorem [3] and
related results such as the Moh-Ephraim Pencil Theorem and the Abhyankar-
Moh Semigroup Theorem.

1. Introduction. The aim of this expository article is to present some applications
of the local theory of plane algebraic curves to the global geometry of the affine plane
over algebraically closed field K of arbitrary characteristic. Abhyankar and Moh
in their fundamental papers [2] and [3] studied the semigroup of a meromorphic
curve using the Newton-Puiseux expansions and the concept of approximate roots
of polynomials in order to prove the famous Embedding Line Theorem. Following
their ideas we provide an introduction to the main theorem of [3]. Our proof uses
basic results of the theory of branches of plane algebraic curves explained in [18].

The contents of this article are

1. Preliminaries
2. Affine curves isomorphic to an affine line
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Polynomial automorphisms of the affine plane

Numerical semigroups and plane branches

5. Abhyankar-Moh theory of approximate roots and the Embedding Line Theo-
rem

6. Curves with one branch at infinity and the Abhyankar-Moh Semigroup The-

orem

e~

2. Preliminaries. In this section we fix our notations and recall basic notions and
results of the theory of plane algebraic curves. The references to this section are
[21, chapters 1-4] and [24, sections 1-6].

2.1. Affine plane curves. Let f = f(z,y) =3_, 4 Ca,pry? € K[z,y] be a poly-
nomial with coefficients in an algebraically closed field K. We put

o supp f = {(a, 8) € N? : o9 # 0},

e deg f=sup{a+p : (a,B) €supp [},

o f+ = Za+ﬁ:degf Caaﬁxayﬂ'
By conventions deg0 = —oco and 0T = 0. We have deg fg = deg f + degg and
(fg)© = frg*t forany f,g € K[x,y]. If P = (a,b) € K? then we put f(P) = f(a,b).
Since the field K is infinite we may identify the polynomial f and the function
P— f(P). Put V(f) ={P e K? : f(P)=0}. Aset ' C K?is an affine (plane)
curve if there is a nonconstant polynomial f such that I' = V(f). If f is of minimal
degree then we call f as minimal polynomial of I'. It is uniquely determined by T’
up to a constant factor. We put deg’ = deg f (the degree of T'). An affine line is an
affine curve of degree one. An affine curve is irreducible if its minimal polynomial
is irreducible in K[z, y].

A point P €T is a singular point of I" if %(P) =0 and g—?fJ(P) = 0 for the minimal
polynomial f of I'. Otherwise it is called simple or nonsingular. The set of singular
points of an affine curve is finite [24, Corollary 6.9]. If that set is empty, the curve
is called nonsingular.

2.2. Algebroid curves. We use formal power series to study the local properties
of algebraic curves. The reader will find the proofs omitted in this section in [9] and
[28]. Recall that the ring of formal power series K[[z,y]] is a unique factorization
domain.

Let f = f(z,y) =2 .5 Ca.pry? € K[[z,y]] be a formal power series with coeffi-
cients in K. We put

o supp f = {(0,8) €N? : a5 # 0},

e ord f =inf{a+ 8 : (o, B) € supp f},

[ ] ll'lf = Za-m:ord I Ca,,Bl‘O‘yB-
Observe that f(0,0) = ¢o,0 (the constant term of f). By conventions ord 0 = 400
and in0 = 0. We have ord fg = ord f 4+ ord g, infg = infing and (fg)(0,0) =
£(0,0)9(0,0), for any f,g € K[z, y]].

A power series u € K[[z,y]] is a unit if uv = 1 for a power series v € K[[z, y]]. Note
that u is a unit if and only if «(0,0) # 0 (that is ord u = 0).
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Let f € K[[z,y]] be a nonzero power series without constant term. An algebroid
curve {f = 0} is by definition the ideal (f)K|[[z,y]] generated by f in K{[z,y]]. We
say that {f = 0} is irreducible (reduced) if f is irreducible (has no multiple factors)
in K[[z,y]]. The irreducible algebroid curves are also called branches.

A formal isomorphism ® is a pair of power series ®(z,y) = (ax +by + -+ ,d'x +
by+ ) € K[z, y]]?, where ab' — a’b # 0 and the dots mean terms in z and y of
order greater than 1. The map f — f o ® is an isomorphism of the ring K{[z, y]].
Two algebroid curves {f = 0} and {g = 0} are said to be formally equivalent if
there is a formal isomorphism @ such that f o ® = g - unit.

Let ¢ be a variable. A parametrization is a pair (¢(t), ¥ (t)) of formal power series in
K{[t]] such that ©(0) = (0) = 0 and ¢(t) # 0 or ¥(t) # 0. Two parametrizations
(p(t),4(t)) and (p1(t1),91(t1)) are equivalent if there exists a formal power Series
7(t) € K[[t]] with ord 7(t) = 1 such that ¢(t) = p1(7(t)), ¥(t) = ¥1(7(¢)).
parametrization (p(t),¥(t)) € K[[t]]? is good if there does not exist 7(t) € K[[t]}
ord 7(t) > 1 and a parametrization (¢1(t1),41(t1)) such that p(t) = p1(7(¢)) and
P(t) = ¢1(7(1)).

Theorem 2.1. (The Normalization Theorem) Let f = f(x,y) € K[[z,y]] be an
irreducible power series. Then there is a good parametrization (o(t),(t)) such that
flo(t),¥(t)) =0. Any two such parametrizations are equivalent.

Remark 2.2. With the notations introduced above we get ord f(z,0) = ord ¢(t)
and ord f(0,y) = ord ¢(t). If (p(t),¢(t)) is a good parametrization and a power
series f = f(x,y) € K[|z, y]] satisfies the conditions f(¢(t), ¥ (t)) =0, ord f(z,0) =
ord 9 (t) and ord f(0,y) = ord ¢(t) then f = f(x,y) is irreducible. o

Let f,g € K|[[z,y]] be nonzero power series without constant term. Let f = f1 -+ f,,
in K[[z,y]] with irreducible factors f;, i = 1,...,m. Let (¢;(t;),1:(t;)) be a good
parametrization such that f;(y;(¢;),¥:(t;)) = 01in K|[[t;]]. Then, we define io(f, g) =
St ord g(wi(t:), i (t;)) the intersection multiplicity or intersection number of the
algebroid curves {f = 0} and {g = 0}. If f(0,0) # 0 or g(0,0) # 0 we put
io(f,g) = 0. The following properties of intersection multiplicity are basic:

(i) io(f,g) = +oo if and only if f and g have a common factor in K[z, y]],

(ii) d0(f, 9192) = 0(f,91) +io(f, 92),

(IV) 20(f7g) = iO(Q? f)7

(v) if @ is a formal isomorphism then ig(f o ®,g 0 ®) = io(f, )7

(vi) do(f,g) = 1if and only if jac (£, 9)(0,0) = $£(0,0)52(0,0)— $£(0,0)52(0,0) #

0.

The following property of the intersection multiplicity is the main ingredient
of the proof of the Jung-van der Kulk theorem (see Proposition 4.7 in Section
4 of this paper).

(vii) Let f,g,1 € K[[z,y]] be irreducible power series, where ord [ = 1. Let m =
io(f,1), n=10(g,1) and d = gcd(m,n). Then

io(f,9) =0 (mod 7 or 5).
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For the proof see [19].

2.3. Projective plane curves. Let P?(K) be the projective plane over K. For
any homogeneous polynomial H = H(X,Y,Z) € K[X,Y, Z] of positive degree we
put V(H)={(a:b:c) € P2(K) : H(a,b,c) =0} and any set of the form V(H) a
projective (plane) curve. Let C be a projective curve. Then, a minimal polynomial
of C is, by definition, a homogeneous polynomial H of minimal degree such that
C =V (H). We put deg C = deg H. A projective line is a projective curve of degree
one. A projective curve is irreducible if its minimal polynomial H is irreducible in
K[X,Y,Z]. Fix a line at infinity Lo = V(Z). We identify the affine plane K? and
the set P?(K)\ Lo by introducing the affine coordinates x = %, Y= % The points
of P?(K)\ Ly are called points at finite distance. For any nonconstant polynomial
f(z,y) € K[z,y] we define the homogeneous form F(X,Y,Z) = Zdegff(g, % .
The projective closure of V(f) is equal to V(F). If f is a minimal polynomial of
V(f), then F is a minimal polynomial of V/(F). In particular deg V(f) = deg V(F).
The points at infinity of V(F) satisfy the equations f*(z,y) = 0,2 = 0. To study
properties of a projective curve C near P = (a : b : 0) € Lo we use the affine
coordinates (u,v) = (¥, 4) ifa#0or (s,t) = (£, £) if b #0.

Let C, D be projective curves intersecting in a finite number of points. Let P € CND
and consider a system of affine coordinates (£, 7) centered at P, that is such that
(&(P),n(P)) = (0,0). Let f(&,m) (respectively g(&,m)) be the minimal polynomial
of C (respectively of D) in the coordinates (£, 7). Then the intersection multiplicity
i(C, D; P) of C' and D at P is defined to be the intersection multiplicity io(f, g) of
the algebroid curves {f = 0} and {g = 0}. It is independent on the choice of affine
coordinates.

Theorem 2.3. (Bézout’s theorem) With the above notations we get

> i(C,D;P) =degC - deg D.
PeCNnD

For the proof we refer the reader to [34].
For any point P of a projective curve C' we define the multiplicity of C at P as

multp(C) = inf{i(C,L; P) : L ¢ C is a line passing through P}.
A line L passing through P is tangent to C' at P if i(C, L; P) > multp(C). Let (&, 7)
be affine coordinates centered at P and let f(£,n7) = 0 be the affine equation of C.
Then multp(C) = ord f and the tangents to C' at P have the equation inf = 0 in
the coordinates &, 7.

By a curve with multiple components we mean a formal linear combination C' =
m1Cy + - -+ + mpCy, where the C; are irreducible curves and the m; are natural
numbers. If F; = 0 is a minimal polynomial of C;, then the minimal equation of
C is, by definition, F = F/"---F;"* = 0. In the sequel we identify the curves
with multiple components and homogeneous polynomials (up to a constant factor).
The notion of intersection multiplicity and Bézout’s theorem extend to the case of
curves with multiple components. Instead of i(C, D; P) we also write i(F, G; P),
where F' = 0 (respectively G = 0) are the minimal equations of C' (respectively of
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D). If f,g € Klx,y] then i(f,g; P) := i(F,G; P), where F,G are the homogenous
polynomials corresponding to f and g.

3. Affine curves isomorphic to an affine line. A polynomial mapping (p, q) :
K — K2 is a polynomial embedding (of the line K ) if there is a polynomial map
g: K? — K such that g(p(t), q(t)) = t in K[t]. This is equivalent to K|[p(t), q(t)] =
K|[t]. An affine curve I' C K2 is isomorphic to the line K (such curves will be called
embedded lines) if there exists a polynomial embedding (p,q) : K — K2 such that
(p,q)(K) =T. We call the pair (p,q) a polynomial parametrization of T'. It is easy
to check that any embedded line is an irreducible affine curve. The graph of a
polynomial of one variable is an embedded line.

To prove basic properties of embedded lines we need several lemmas. Let I' be
an embedded line with a minimal equation f(x,y) = 0 and let (p(t),q(t)) be a
polynomial parametrization of I'. Suppose that (p(0),¢(0)) = (0,0).

Lemma 3.1. Let (p1(s), q1(s)) € K[[s]]? be a parametrization of the algebroid curve

f@,y) = 0. Then (p1(s), q1(s)) = (p(7(s)), q(7(s))), where 7(s) € K[[s]] and 7(0) =
0.

Proof. The polynomials x — p(t), y — q(t) vanish on the set of solutions of the
system of equations f(z,y) =0, g(z,y) —t = 0. Thus by Hilbert’s Nullstellensatz
x — p(t) and y — q(¢t) belong to the radical of the ideal generated by f(x,y) and
g(z,y) —t in K[x,y,t]. Let 7(s) := g(p1(s),q1(s)). Then f(pi(s),q1(s)) = 0 and
4(p1(5),01(s)) — 7(s) = 0, which implies py(s) — p(r(s)) = 0 and 1(s) — q(r(s)) =
0. O

Lemma 3.2. The polynomial f(x,y) is irreducible in K[[z,y]].

Proof. Let fo(x,y) € K|[z,y]] be an irreducible power series such that fo(p(t),q(t)) =
0. Then f(z,y) = fo(z,y)*fi(z,y) € K[[z,y]], where k& > 1 is an integer and
fi(p(t),q(t)) # 0in K[[t]]. We claim that f1(0,0) # 0. Otherwise, applying the Nor-
malization Theorem to an irreducible factor of fi, there would exist a parametriza-
tion (p1(s), q1(s)) € K[[s]]* such that fi(p1(s), q1(s)) = 0. Thus f(pi(s),q1(s)) =0
and pi(s) = p(7(s)), ¢1(s) = ¢q(7(s)), with 7(s) € K[[s]], 7(0) = 0 by Lemma 3.1.
From f1(p(7(s)), q(7(s))) = 0 we get f1(p(t),q(t)) = 0, which is a contradiction.

It remains to check that k = 1. If we had k > 1 then the power series f@ ' would
divide 51 and 5L, which implies that L (p(t),¢(t)) = 0 and %L (p(t), ¢(t)) = 0, that
of

is 37 and % vanish on I'. This is impossible since an algebraic curve has a finite

number of singular points. O

Lemma 3.3. With the above notations we get ord f(x,y) = 1.
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Proof. Since g(p(t),q(t)) =t we have that (p(t), q(t)) is a good parametrization of
the algebroid curve {f(z,y) = 0}. By Lemma 3.2 f(x,y) is irreducible. Therefore
ord f = inf{ord p(t),ord ¢(t)} (see Remark 2.2). From g(p(t),q(t)) = t we get
S2(p(),a(®)p' () + F2(p(1),a(1))q'(t) = 1, whence (p'(0),¢(0)) # (0,0). Thus
inf{ord p(t),ord ¢(¢t)} = 1 and consequently ord f =1 O

Now we can check

Proposition 3.4. Any embedded line is nonsingular.

Proof. Let T’ be an embedded line with a polynomial parametrization (p(t),q(t)).
Let P = (x0,y0) € T' and (x0,%0) = (p(to),q(to)) for a tg € K.

Introducing the new coordinates = = — g and § = y — yo and replacing the
parameter ¢ by £ = t — to we may assume that P = (0,0) and (p(0), ¢(0)) = (0,0).
By Lemma 3.3 we get ord f(x,y) = 1, which is equivalent to %(0,0) # 0 or
55(0,0) £ 0. O

Proposition 3.5. Let I' be an embedded line of degree greater than 1 and let
(p(t),q(t)) be a polynomial parametrization of I'. Let L be the line bx — ay + ¢ = 0.
Then

i(I, L; (p(to), q(to))) = ord (bp(t + to) — aq(t + to) + c).
In particular, the number of points of the intersection of I' and L counted with their
multiplicities is equal to deg(bp(t) — aq(t) + ¢).

Proof. Let f(z,y) = 0 be the minimal equation of I. Like in the proof of Proposition
3.4 we may assume that t¢ = 0 and (p(0),¢(0)) = (0,0). Then L is the line
bx — ay = 0. Since by Lemma 3.2 the algebroid curve {f(z,y) = 0} is irreducible
and (p(t),q(t)) is a good parametrization, so we get i(T', L; (0,0)) = ord (bp(t) —
aq(t)). O

Proposition 3.6. Let I' be an embedded line of degree greater than one and let
(p(t),q(t)) = (apt™+- -, bot™+- - ) with (ag, bo) # (0,0) be a polynomial parametriza-
tion of I'. Then
1. degl’ = max{degp, degq} = n,
2. the closure T in P?(K) intersects the line at infinity exvactly at the point O =
(ag : bo : 0),
3. multp_I' = n — deg(bop(t) — apq(t)) and the line at infinity Lo is the only
tangent to T at O .

Proof. Let L be the line V (bz —ay+c). Then the projective closure L of L intersects
the line at infinity in the point (@ : b : 0). If (@ : b : 0) # Oc = (ap : bo :
0) then, by Proposition 3.5, the number of points of the intersection of I' and L
counted with their multiplicities is equal to deg(bp(t) — aq(t)) = n and by Bézout’s
theorem degl’ = degl’ = n. Moreover I' N Lo, = {Ou}. If L passes through
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Os then L = V(bpx — agy + co), where ¢y € K and again by Bézout’s theorem
i(T, L; Oxo) = n — deg(bop(t) — aoq(t)) < n for all lines L # Lo, passing through
Oco- Since I'N Ly, = {Ou} we have that i(T, Loo; On) = n. Therefore multp I =
n — deg(bop(t) — apq(t)) and the line at infinity L is the unique tangent to I' at
Oco- O

Now, let C' C P%(K) be a projective curve. We say that C is analytically irreducible
at P € C if the affine equation of C in a system of affine coordinates (z,y) centered
at P is irreducible in K[z, y]]. Clearly a projective curve C is analytically irreducible
at any nonsingular point of C.

Proposition 3.7. Let I' be an embedded line of degree greater than one and let Oy
be the only point at infinity of I'. Then T is analytically irreducible at O.

Proof. Suppose that degI" = n. Let (p(t), ¢(t)) € K[t]? be a polynomial parametriza-
tion of I'. Using a linear automorphism we may assume that p(t) = t" + - - -,
q(t) =t™+ .-+, where m < n. Thus O = (1 : 0 : 0) by Proposition 3.6. Let
f(z,y) = 0 be the minimal equation of I". Multiplying f(z,y) by a constant we
may assume that f(z,y) = y" + a1 (2)y" ' + - + a,(z), where degay(z) < k for
k=1,...,n. Let (X : Y : Z) be the homogeneous coordinates in P?(K) = K?U Ly,
and let F(X,Y,Z2) = Z"f (%, %) be the homogeneous polynomial corresponding
to f(z,y). Thus F(X,Y,Z) = 0 is the minimal homogeneous equation of I". Let
u= X v==% and let foo(u,v) = u" + (var(2))"" 1 + -+ + v a, (L) € K[u,v].
Then X "F(X,Y,Z) = F (1%, £) = fao(u,v). Let v(t) = -obes, u(t) = L
Then ord v(t) = n, ord u(t) = n —m and fo(u(t),v(t)) = 0. The parametriza-
tion (v(t),u(t)) is good since K[p(t),q(t)] = K|t] implies t~! € K[p(t~1),q(t™1)] =

K [ L M} Observe that ord foo(u,0) = n and ord foo (0,v) = ord foo =n — m.

v(t)? v(t)
Therefore foo(u,v) is irreducible in K{[u,v]] by Remark 2.2. O

4. Polynomial automorphisms of the affine plane. In this section we prove
the Jung-van der Kulk theorem on polynomial automorphisms of the plane. Follow-
ing van der Kulk’s ideas we study the intersection at infinity of two curves defined
by the coordinates of an automorphism. There are many papers on the Jung-van
der Kulk theorem (see [38, Notes on page 115]). Mostly, the authors consider only
the case of zero characteristic.

A polynomial mapping f = (f1, f2) : K? — K? is said to be a polynomial au-
tomorphism of K? if it is bijective and the mapping f~' = (g1, ¢2) : K2 — K?
is also polynomial. Clearly f = (f1, f2) is a polynomial automorphism if and only
if K[f1,f2] = Kl[z,y]. All polynomial automorphisms of K2 form a group with

the composition of mappings as the group operation. This group will be denoted
GA(K?).
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Examples 4.1.
1. The affine automorphisms (z,y) — (azx + by + c,a1x + b1y + c1), where
aby —a1b # 0.
2. The de Jonquieres automorphisms (x,y) — (z,y+P(z)), where P(z) € K|z].

Proposition 4.2. Let f = (f1, f2) € GA(K?). Then

(1) the polynomials f1, fo are irreducible in K|x,y],
(2) jac f = %%—f — %%—2 = constant # 0,

(3) the affine curves V(f1), V(f2) are embedded lines; if i_l = (g1,92) then

(91(0,v),g2(0,v)) is a polynomial parametrization of V(f1) and (g1(u,0), g2(u, 0))
is a polynomial parametrization of V(fa).

Proof.

(1) The mapping K[u,v] 3 g(u,v) — g(fi(x,y), f2(z,y)) € K[z, y] is an isomor-
phism. Thus f; (respectively f3) is irreducible as the image of the variable u
( respectively v) by an isomorphism.

(2) Let g = f~'. Then go f = identity and ((jacg) o f)jac f = 1 in K[z,y].
Therefore jac f = constant # 0.

(3) The property follows from the identities

f1(91(0,v),92(0,v)) =0,  f2(91(0,v),92(0,v)) = v,
fl(gl(u70)792(u70)) =u and f2(gl(u70)792(u70)) =0
in K[u,v].
O

Jacobian Conjecture (Keller 1939) Let K be a field of characteristic zero.
Suppose that f : K* — K? is a polynomial mapping such that jac f = constant #
0. Then f is a polynomial automorphism.

This conjecture is still open, see [35]. If char K = p > 0 then the conjecture is false:
take f(z,y) = (z,2" +y) for (z,y) € K2

An affine algebraic curve I' is called a coordinate line if there exists a polynomial
automorphism of K2 mapping it onto the axis {0} x K. Equivalently, if there exists
a polynomial automorphism f = (fi, f2) such that I' = V(f1).

Proposition 4.3. Any coordinate line is isomorphic to the line K i.e. it is an
embedded line.

Proof. Use the third part of Proposition 4.2. O
For any polynomial automorphism f = (f1, f2) we set deg f = max(deg f1,deg f2).

Proposition 4.4. For any f € GA(K?) we get degi_1 =deg f.
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Proof. Since f; (i = 1,2) are irreducible deg f; = deg V(f;) for i = 1,2 and deg f =
max(deg V(f1),deg V(f2)). By Propositions 3.6 and 4.2 (3) we get

deg V(f1) = max(deg g1(0, v), deg g2(0,v)) < max(deg g1, deg go) = deg f ',

and

deg V(f2) = max(deg g1(u, 0), deg g2(u,0)) < max(deg g1, deg go) = deg f .

Therefore deg f < deg i71 for every f € GA(K?). Applying the inequality deg f <
degi_1 to i_l € GA(K?) we get degi_1 < deg f. Consequently deg f = degi_l.
U

Proposition 4.5. ([22]) Let f # id be a polynomial automorphism. If an affine
curve I' C K? lies in the set Fix(f) = {(a,b) € K* : f(a,b) = (a,b)} then T
intersects Lo, at one point.

Proof. We may assume that degl’ > 1. Then deg f; > 1 or deg fo > 1. Suppose
that deg fi > 1. We have I' C V(f; — ). The curve V(f; — ) has one point
at infinity since deg fi > 1 and V(/f1) is an embedded line by Proposition 4.2 (3).
Thus I' has one point at infinity. O

Proposition 4.6. ([22]) Let T C K? be an affine curve which intersects the line
at infinity Lo at least in two points. Suppose that f,g € GA(K?) and iIF =
Then f = g.

Proof. The condition i|1“ =g implies that I' C Fix(g~' o f). Since I' has more
than one point at infinity we get g‘l o f =1idand g = f by Property 4.5. O

To prove the famous Jung-van der Kulk theorem we begin with the following basic
property of polynomial automorphisms due to van der Kulk [39].

Proposition 4.7. ([39, Lemma on p. 36]) Let f = (f1, f2) € GA(K?). Then of
the two integers n1 = deg f1, no = deg fo one divides the other.

Proof. Let C7 and Cy be the projective curves with the affine equation fi(x,y) =0
and fo(z,y) = 0. Then degC; = nj, degCs = ng and each of the curves has
exactly one branch at infinity. We may assume that n; > 1 and ny > 1. Then C}
and Cs intersect at infinity in a common point O. Since C; and C5 intersect in
exactly one point at finite distance (with multiplicity one by Proposition 4.2 (2)),
we get by Bézout’s theorem i(Cy,Ca;Os) = ning — 1. Obviously, we have that
i(Ciy Loo; Os) =y for i = 1,2. Let d = ged(ny, ng). Then by Property (vii) of the
intersection multiplicity applied to the affine equations of C7, Cy and L, in the
affine system of coordinates centered at O, we get n1na — 1 =0 (mod = or n2y,
This implies thad d = ny or d = ns. ]
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Theorem 4.8. (Jung-van der Kulk theorem) The group GA(K?) is generated by
the affine and the Jonquiéres automorphisms.

Proof. Let f = (f1, f2) € GA(K?). Suppose that f is not an affine automorphism.
We may assume that n; = deg f1 < no = deg fa (if n1 > no then we replace f
by s o f, where s(u,v) = (v,u)). By Proposition 4.7 the rational N = 7 is an
integer. Each of the affine curves V(f1),V(f2) has exactly one point at infinity.
Since f is not an affine automorphism the points at infinity of V(f1) and V(f2)
coincide. Thus we can find a constant ¢ € K such that deg(fa —cf{) < deg fo. Let
t(u,v) = (u,v —cuN). Then ¢ is a de Jonquidres automorphism and to f = (f1, fa),
where deg f; < deg fo. Repeating this procedure a finite number of times we get a
decomposition of f into de Jonquieres and affine automorphisms. O

5. Numerical semigroups and plane branches. The basic reference to this
section is Angermiiller’s article [5]. The text on the planar semigroups in [33] is
also very instructive. The description of the semigroups corresponding to algebroid
branches was proved by Bresinsky [8] in the case of zero characteristic. The general
case was proved in [5]. The irreducibility criterion due to Abhyankar and Moh
(see [2], [1] and [33]) allows to test polynomials for irreducibility and works if the
degree of a polynomial with respect to a distinguished variable is not divisible by
the characteristic of K.

Let IN be the set of non-negative integers. If aq, ..., a,, € N then Nag+---+ Na,,
stands for the set of all integers of the form qoag+- - - + G @m, Where qq, . .., ¢ € N.
A subset G of N closed under addition and containing 0 is called a semigroup. If
G = Nag + - - - + Na,, then we call the sequence (ao, ..., a,) system of generators
of G. A semigroup G is numerical if gcd(G) = 1.

5.1. Nice sequences. The following lemma is basic for further considerations.

Lemma 5.1. Let (vo, ..., vs) be a sequence of positive integers. Set dy, = ged(vo, . . .,
vg_1) fork € {1,....h + 1} and n, = % for k € {1,...,h}. Then for every

T dyta
a € Zdy 11 we have a Bézout’s relation:

a = agvg + ai1vi + - -+ + Vs,

where ag, ...,ap € Z and 0 < a, < ny fork € {1,...,h}. The sequence (ag, ..., ap)
1S unique.

Proof. Ezistence: if h = 0 the lemma is obvious. Suppose that h > 0 and that
the lemma is true for h — 1. Since dpy1 = ged(dp,vy) we can write for every
a € Zdpy1: a = d'dp + a’ vy, with @/,a” € Z. For any integer | we have a =

(a/ — lop)dp + (a” + ldp)vp,. Thus we can take a’ > 0. Dividing a’ by np = diil

we get a = nham + ap, with 0 < ap < nj. Therefore

" ’Uh

a=dady,+(npa” +ap)oy, = (a'dy +npa o) + apvy = (w ta ) dp + anvp,.

dpi1
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dlw,-{;l
0<ap<ngfor0<k<h-—1and we are done.

By induction hypothesis we get (a’ +a S ) dy, = apvo + -+ + ap_1vp—1 with

Uniqueness: Suppose that agvo+- - -+apvn, = agvo+- - -+aj,v, with 0 < ag, a), < ny
for £ > 0. Let ap < a},. Then (aj, — ap)v, = 0 mod(vo,...,vr—1)Z, that is
(a), — ap)vy, = 0 mod(dy,), which implies (a}, — ap) 72

Vh

= 0 (mod ny). Since 5

dp+1 ht1
and ny, are coprime and 0 < aj, — ap, < np, we get aj, — ap, = 0. Uniqueness follows
by induction. O
In what follows we assume that dj, 11 = ged(vo, ..., vp) = 1. We set

h
CZZ(nk—l)vk—v0+1
k=1

and we call ¢ the virtual conductor of the sequence (vy, ..., vp).
Proposition 5.2. Let ¢ be the virtual conductor of the sequence (vy,...,vs). Then

¢ >0 and c =0 if and only if vy = dgy1 for allk =1,... h such that ny > 1.

Proof. Obviously vy, > dgy1 for k = 1,...,h. Therefore we get ¢ = Zzzl(nk —
Dok —vo+1 > Zzzl(nk — 1)dk41 — di +1 = 0. Clearly ¢ = 0 if and only if
vk = dg41 for all k such that ng > 1. O

Proposition 5.3. (Brauer) With the notations introduced above, if a is an integer
such that a > ¢ then a € Nvg + - -+ + Nuy,.

Proof. Let’s write Bézout’s relation for the integer a: a = agvg + - - - + apvp, where

0<ap<np—1for k=1,...,h. Then agvg za—zzzlakvk > c—zzzlakvk =
—vo+ 1+ 0 (i — 1 — ag)vx > —vg + 1. Consequently we get ag > %ﬂ“ =
-1+ % > —1, which implies ag > 0. O

Proposition 5.4. Suppose that lvy € Nug + - -+ + Nug_1, for an integer | > 0.
Then I =0 (mod ny).

Proof. If luy, € Nug + - -+ + Nug_1 for an integer [ > 0 then lvy = 0 (mod dy) and

U

= 0 (mod ny). Since d:j—l and ny = dfj—l are coprime we get I = 0 (mod

dit1
’I”Lk). O
Definition 5.5. A sequence (vo,...,vp) is nice if ngvg € Nvg + -+ + Nug_q for
k=1,...,h.

Note that njv; = (Z—;) vo € Nvg. Hence the sequence (vg,v1) is nice. The sequence

(6,7,8) is not nice but the sequence (6,9,7) is.

Proposition 5.6. Let (v, ..., vy) be a nice sequence. Then for every k € {1,...,h},
v & Nug + - -+ + Nug_1 if and only if n > 1.
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Proof. If vy, € Nvg + -+ + Nvg_1 then ng > 1 by the definition of nice sequences.
If ng > 1 then vy, € Nvg + - - - + Nug_1 by Property 5.4. O

Proposition 5.7. Let (vg,...,vp) be a nice sequence and let ¢ be the virtual con-
ductor of (vg,...,vpn). Set G =Nuvg + -+ Nuvy. Then
1. ifa € Nvg+---+Nuvg then a = agvg+ - - - +agvr with 0 < ag and 0 < a; < n;
fori=1,... k.
2. For every a,b € Z: if a+ b= c—1 then exactly one element of the pair (a,b)
belongs to G.
8. The virtual conductor ¢ equals the conductor of G, that is, all integers greater
than or equal to ¢ are in G andc—1 ¢ G.
4. cis an even number and §(N\G) = §.

Proof.

1. If £ = 0 the assertion is obvious. Suppose that & > 0 and that the property
is true for k£ — 1. By assumption we have a = qovg + - - - + qxvx with ¢; > 0 for
i=0,...,k. By the Euclidean division of g, by ny we get qx = g, nx + ax with
0 < ap < ng. Thus a = qovo + -+ - + qr—1Vk—1 + GNEVE + axvr = @’ + apvg,
where 0 < ap < ng and @’ € Nvyg + -+ + Nug_; since by hypothesis the
sequence (vg,...,vp) is nice so q,’cnkvk € Nuvg + -+ + Novg_1. We use the
induction hypothesis.

2. Take two integers a,b € Z such that a +b = c — 1. Let us write the Bézout’s
relation a = agvg + ayv1 + -+ + apvp, where a9 € Z and 0 < a; < n; for
i € {1,...,h}. Then by the definition of ¢ we get b = ¢ —1—a = —vg +
22:1(7% — vk — agvg — 22:1 arvr = —(ap + 1)vg + Zzzl(nk —1—ag)vg.
This is a Bézout relation. To finish the proof it suffices to remark that exactly
one element of the pair (ag, —ag — 1) is greater than or equal to zero.

3. By Property 5.3 any integer a > cis in G. On the other hand, since (¢c—1)+0 =
c—1and 0 € G we have c—1 ¢ G, by the second statement of this proposition.

4. The mapping [0,¢c —1]NG 3> a = c—1—a € [0,¢— 1] N (N\G) is bijective.
Therefore we have 2 - §([0,c — 1] N G) = ¢ and the fourth claim follows.

O
Proposition 5.8. Let (vg,...,vy) be a sequence of positive integers such that for
any a € Nvg + --- + Nuy, there exist integers ag,aq,...,an such that a = agvg +
ayv1 + -+ apvp and 0 < ag, 0 < ay, < ng for k=1,..., h, where ny, == =% with

di41
di, = ged(vg, ..., vg—1). Then (vo,...,vn) is a nice sequence.

Proof. We have nyvy = di (d:il) = 0 (mod di). Therefore by Bézout’s relation
we get npvr = aGgug + ayvi + -+ + ax_1vx_1, where ag € Z, 0 < ap < ng for
k = 1,...,h. By the uniqueness of Bézout’s relation ay = --- = ap, = 0 and

nivr € Nvg + - - + Nug_1. ]
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5.2. Semigroups of plane branches. For any irreducible power series f € K[[z,y]]
we put

G(f) = {io(f,g) : g runs over all power series such that g # 0 (mod f)}.

Clearly G(f) is a semigroup. Obviously G(f) = G(uf), where u is a unit in
K([z,y]]. We call G(f) the semigroup associated with the branch {f = 0}. We
have min(G(f)\{0}) = ord f. Hence G(f) = N if and only if ord f = 1. If two
branches {f = 0} and {g = 0} are formally equivalent then G(f) = G(g). The
semigroups of branches can be characterized in terms of sequences of generators. A
sequence of positive integers (rq,...,rp) is said to be a characteristic sequence if it
satisfies the following two axioms

(CS1) Set di, = ged(ro,...,rg—1) for 1 <k <h-+1. Then dg > dgy1 for 1 <k <h
and dh+1 =1.
(CSZ) diri < dpy17K41 for 1 <k < h.

We call rg the initial term of the characteristic sequence. Remember that n, = d

diy1”
Hence the condition (CS2) can be rewritten in the form ngry < ri4q for 1 <k <h.

Lemma 5.9. Any characteristic sequence is nice.

Proof. Fix k € {1,...,h}. Since ngry = dy (d;il) = 0 (mod dj) we can write,
by Lemma 5.1, the Bézout’s relation for a = ngry: niry = agro + -+ + Gp_17k_1,
where ag € Z and 0 < a; < n; for i = 1,...,k — 1. Therefore we get agrg =
NETE—01T1— - —Qg—1Tk—1 > Nl — (M1 — 1)1 — - —(ng—1—1)rp—1 = ngrp—[(n1—
Dri+- 4 (ng—1—1rg—1] > ngr—[(ra—r1)+ - -+ (rg —7k-1)] = nerp—rg+r1 > 0,
which implies ag > 0. O

Let G = Nrg+ - - -+ Nrp, be the semigroup generated by the characteristic sequence
(ro,...,7). Then ry = min(G\(Nrg+---Nry_1)) for 1 < k < h, which shows that
G and r¢ determine the sequence (rg,...,ry). By Lemma 5.9 and Proposition 5.7
the conductor of G is equal to ¢ = ZZ=1(”k —Drp—ro+ 1.

Theorem 5.10 (Bresinsky-Angermiiller Semigroup Theorem).
1. Let f = f(z,y) € K[[z,y]] be an irreducible power series. Suppose that n =
to(f,x) < +o00. Then the semigroup G(f) of the branch {f = 0} is generated
by a characteristic sequence (rq,...,Th), where ro = n.
2. Let G C N be a semigroup generated by a characteristic sequence with the

initial term n > 0. Then there exists an irreducible power series f = f(x,y) €
K{[z,y]] such that io(f,z) =n and G(f) =G.

A characteristic-blind proof of the above theorem is given in [18, Theorem 6.5].
The following result is a local version of the irreducible criterion of Abhyankar and
Moh (see [1, page 99]).

Theorem 5.11 (Abhyankar-Moh irreducibility criterion). Let f = f(x,y) € K[|z, y]]
be an irreducible power series such that n = io(f,x) < 400 and let G(f) =
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Nrg + - -Nrp, where ro = n. If g = g(z,y) € Kl[z,y]] is a power series such
that i0(g, x) = n and io(f, g) > dnrn then g is irreducible and G(g) = G(f).

For the proof of the above theorem we refer the reader to [18, Corollary 5.8].

6. Abhyankar-Moh theory of approximate roots and the Embedding Line
Theorem. Abhyankar in [1] gave a simplified version of [2] and [3]. Russell in [31]
reproved the Abhyankar-Moh results using the Hamburger-Noether expansions with
weaker assumptions on the field characteristic. A short proof of the Embedding Line
Theorem due to Richman and Nowicki is included in [38] (see also [23]). Another
proof was given by Ganong [16]. Suzuki [36] proved the Embedding Line Theorem
independently in the case K = C.

The Abhyankar-Moh inequality is one of the main results of [3]. Its proof given by
Abhyankar and Moh relies on detailed analysis of Puiseux expansion at infinity (see
also [11], Appendix A). The inequality can be also stated in terms of the semigroup
associated with the branch at infinity of the given curve (see [20], [7] and [17]).

The presentation of the subject given in this section is based on [18] (see also [20]
and [12]). The reader will find in [29] more references about the approximate roots.

Let R be a commutative ring with identity and let f € R[y] be a monic polynomial
of degree n > 0. Let d > 0 be a divisor of n. A polynomial g € R[y] is called an
approzimate dth root of f (we will denote it g = /f) if g is monic and deg(f —g?) <
deg f — degg. Thus we have deg f = deg g¢ and deg g = n/d.

Proposition 6.1. Let f € R[y] be a monic polynomial of degree n > 0. Let d > 0
be an integer such that d divides n. Assume that d is a unit in R. Then there ezists
a unique approzimate dth root Vf of f. If f =y™ +a1y” '+ --- + a,, then

g= y”/d+b1y(”/d)—1 + -+ by,

where

P i1
bV = =a, + E 5’i17--~7iu71aL11 U a/LV—l ) (61)
i1+2ip++(v—1)i,_1=v

forv=1,...,% with B, . i, _, €Z [5] depending only on n and d.

Proof. The inequality deg(f —g%) < n — 7 is equivalent to the system of equalities

ay = db, + > i B (6.2)
i1+2ip+-+(v—1)i, 1=V

forv=1,...,%, where
. d (i 4 +ip_1)!
11yl —1 i1+"'+iy—1 Z‘ll"'iyfll :
The system (6.2) of 4 equations with the unknowns b1, ...,b,/q has exactly one

solution given by formulae (6.1). O
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Let f(z,y) € Klz,y]]. We say that f is a y-distinguished polynomial (in short:
distinguished) if f(x,y) = y"™ + a1(x)y" ' + - - - + an(z), where a;(z) € K[[z]] and
a;(0)=0for 1 <i<n.

Now, we can state the Abhyankar-Moh theorem on approximate roots.

Theorem 6.2 (Abhyankar-Moh Fundamental Theorem on approximate roots). Let
f = f(z,y) € K[[z]][y] be an irreducible distinguished polynomial of degree n > 1
with G(f) =Nrg + -+ Nrp, and ro =n. Let k € {1,...,h}. Suppose that dy Z 0
mod charK. Then:

1 do(f, %) =k,
2. %/f is an irreducible distinguished polynomial of degree n/d;, and G( %/f) =
N7+ Ng+ -+ N7

—1
di

For the proof of the above theorem we refer the reader to [18].

Let I be an affine irreducible curve in K 2, We say that I’ has one branch at infinity
if the projective closure I' of I intersects the line at infinity Lo, in only one point
Ox, and T is analytically irreducible at O.

Let (u,v) be a system of affine coordinates centered at O such that L., has
the equation v = 0. Let fo(u,v) = 0 be a polynomial equation of T of total
degree n = deg'. Multiplying f. by a constant we may assume that f. is a
u-distinguished polynomial (of degree n since I' and L., intersect only at Ou)
irreducible in K[[u,v]].

Let G(foo) = Nrg + -+ + Nrp, with rg = n = degI'. We call (rg,71,...,7) the
characteristic of ' at infinity. Clearly it is independent on the system of coordinates.

Observe that r; = ord fo, = multo . Let n’ = multo_T'. We call T permissible
if d := ged(n,n’) # 0 (mod char K).

Theorem 6.3 (Abhyankar-Moh inequality). Assume that I' is an affine curve of
degree n > 1 with one branch at infinity and let (ro,...,7n) be the characteristic of
T at infinity. If T is permissible, then dpry, < n?.

Proof. Let (u,v) be the affine coordinate system introduced above and let foo (u,v) =
0 be the affine equation of T. Then G(fs) = Nrg + -+ + N7y, with rg = n and
r1 = n'. Therefore do = ged(ro,71) # 0 (mod char K) and consequently dj, # 0
(mod char K).

By Theorem 6.2 applied in the case k = h the approximate root (with respect to u)
%/ foo exists and io(foo, %/ foc) = 5. The total degree of %/ fo is 7= by formulae
(6.1) of Proposition 6.1. Thus by Bézout’s theorem applied to foo and “/fo we
get 7 = 10(foo, W foo) < ng-. In fact, we have r, < ng- for r, = ng- would
imply 7, = 0 (mod dp,) which is impossible. O

Now we can state
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Theorem 6.4 (Abhyankar-Moh Embedding Line Theorem, first formulation). As-
sume that T is an embedded line of degree n > 1 and let ' = multo_T'. Suppose
that T is permissible. Then n —n’ divides n.

To prove Theorem 6.4 we need the Abhyankar-Moh inequality and two lemmas.

Lemma 6.5. Let I' be an embedded line of degree n > 1 and let (ro,...,ry) with
h

ro = n be the characteristic of T' at infinity. Then Z(nk — Dy, = (ro — 1)~
k=1

Proof. Let ¢ be the conductor of the semigroup Nrg + - -- + Nr,. By the genus

formula applied to T’ we get (n—1)(n—2) = 23, where § is the double point number

at Oy (for the definition of § and the genus formula we refer the reader to [24,

Definition 14.8, Theorem 14.7]). Since ¢ = 2§ we get the lemma from the conductor
h

formula ¢ = Z(nk —1)rg —ro+ 1. O
k=1
Lemma 6.6. Let (rg,...,r) be a characteristic sequence such that
h
(a) > (nk— i = (rg — 1),
k=1

(b) dpry <713.
Then ry, = % —dgt1, for ke {1,...,h}.

2

Proof. Let qr := g— — g5 for k € {1,...,h}. Then g is an integer and
2— Tk o .
qr = ";;iiii’“ = Tskd(iilk >0 by condition (b). Hence g, > 1 and Z—j -7, =

di+1qk > di+1, which implies

TL2

d——dkH—TkZO for k=1,...,h. (6.3)
k

On the other hand
h TLQ h 2
kZ::l(nk -1) <dk —dgt1 — Tk) = Z( ng —1) <d dk+1> Z(nk —r

(6.4)
Combining (6.3) and (6.4) we get 1, = Z—: —dgy1, for ke {1,...,h}. O

Proof. (of Theorem 6.4) Let (rg,...,7rs), 7o = n be the characteristic of T at
infinity. By Theorem 6.3 and Lemma 6.5 the characteristic sequence (ro, ..., )
verifies conditions (a) and (b) of Lemma 6.6 and consequently rj, = Z—i — djy1, for
k=1,...,h. In particular, 11 =d; —ds =19 — dz. Hencen —n' =rqg —ry = do =
ged(rg,r1) = ged(n,n’) and we are done. O
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Theorem 6.7 (Abhyankar-Moh Embedding Line Theorem, second formulation).
If (p,q) : K — K? is a polynomial embedding such that n = degp, m = degq > 0
and ged(m,n) Z 0 (mod char K) then m divides n or n divides m.

Proof. We may assume that 1 < m < n. Let I' be an embedded line with polynomial
parametrization (p, q), that is I' = (p, ¢)(K). Then On = (1:0:0), T is of degree
n and its multiplicity at Oy is n’ = n — m by Proposition 3.6. Therefore T" is
permissible. Apply Theorem 6.4 to the curve I'. O

Corollary 6.8. Let K be of characteristic zero. Then any embedded line is a
coordinate line.

Proof. LetT' C K? be an embedded line. Proceeding by induction on deg I if suffices
to check that if degI' > 1 then there exists an automorphism f € GA(K?) such that
deg f(I') < degI' (the image of an embedded line by a polynomial automorphism is
again an embedded line). Let n = degI’ > 1. Using a linear automorphism we may
assume that I' = (p, q)(K?), where p(t) =t" +--- and ¢(t) =t™ +---, withn > m
and the dots mean terms in ¢ of degree less than n (respectively m). By Theorem
6.7 the number N = 2 is an integer. Let f(u,v) = (u—v",v). Then f € GA(K?)
and f(T') is an embedded line with parametrization (p(t) — q(t)",q(t)). Therefore
we have that deg f(I') = max{deg(p(t) — q(t)"),degq(t)} < n =degT. O

Remark 6.9. The condition ged(m,n) #Z 0 (mod char K) is automatically satisfied
for char K = 0, and is essential for [ = char K # 0. The following example is due
to Nagata (see [26] and [17]). Let char K =1 > 0 and let ¢ > 1 be an integer
coprime with 1. Consider the polynomials p(t) = tl27 q(t) = t +t*. Then for
flz,y) = (v —2*)! — 2 and g(z,y) =y — (y' — 2*)* we have f(p(t),q(t)) = 0 and
g(p(t), q(t)) = ¢, which shows that the affine curve f(z,y) = 0 is an embedded line.
Moreover neither degp divides degq nor deg ¢ divides degp. o

7. Curves with one branch at infinity and the Abhyankar-Moh Semigroup
Theorem. Our presentation of the Abhyankar-Moh Semigroup Theorem follows
the treatment of Pinkham [27]. In [32] the notion of planar semigroup is introduced
and studied. In [33] and [30] the construction of a curve with given planar semigroup
is given. The reader will find in [40] an interesting application of the Abhyankar-
Moh Semigroup Theorem. For further developments of the theory of the curves
with one branch at infinity we refer the reader to [4], [6], [10], [13], [14], [15]. The
pencil theorem is due to [25] and [13].

An affine irreducible curve I' C K2 has exactly one point at infinity if its projective
closure T intersects the line at infinity L., exactly in one point. Suppose that T’
intersects Lo in Oso = (1:0:0). Then I has a minimal affine equation of the form
f(z,y) = y"+ar1(zx)y" 1+ -+an(x), where deg ax(z) < kfork =1,...,n = degT.
Let (X : Y : Z) be the homogeneous coordinates in P?(K) = K2 U L., and
let F(X,Y,Z2) = Z"f (%, %) be the homogeneous polynomial corresponding to
f(z,y). Thus F(X,Y,Z) = 0 is the minimal homogeneous equation of C :=T. Let
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u=2, v==%andlet foo(u,v) = u" +va; ()"t + - + 0", (2) € K[u,v].
Then foo(u,v) is a distinguished polynomial; the equation describes the portion of
C lying in P2(K)\V(X). The curve I' has one branch at infinity if and only if
foo(u,v) is irreducible in K{[u,v]]. We have ig(fs,v) = n = deg C and ig(foo, u) =
n' = multp_ C if C is unitangent at O. Clearly

n B Y Z\ Y Z
Lemma 7.1. Let g = g(z,y) = y"+b1(x)y" 1+ -+b,(z) € K[z,y], degbx(z) < k
fork=1,...,n. Suppose that the polynomial goo(u,v) = u™ + vb; (%) w4
v"by, (L) € Klu,v] is irreducible in K[[u,v]]. Then g = g(z,y) is irreducible in

v

Klz,y].

Proof. Suppose that g = g(z,y) is not irreducible in K[z,y]. Then g = g1g2, where
gi = y"™ + terms of degree < n; for i = 1,2 and goo = (¢1)o0(g2)00, which is a
contradiction since the factors (¢;)s0, ¢ = 1,2, are u-distinguished polynomials in
K|[u,v]]. O

Theorem 7.2 (Moh-Ephraim Pencil Theorem). If f(x,y) € Klz,y] is an irre-
ducible polynomial such that the affine curve T' : f(xz,y) = 0 has one branch at
infinity of characteristic (ro,r1,...,7n), ro =n = deg' and is permissible then the
polynomials fx(z,y) = f(x,y) — X\, A € K are irreducible in K[x,y] and the curves
Ty : fa(z,y) = 0 have one branch at infinity of characteristic (ro,r1,...,7h).

Proof. Let A # 0. The curves fy = 0 and f = 0 do not intersect in K2 and we get
i0((f)\)oo, foo) = deg fr-deg f = n? > dj,r), by Bézout’s theorem and the Abhyankar-
Moh inequality. Now, the Abhyankar-Moh irreducible criterion (Theorem 5.11)
implies that (f))co is irreducible in K[[u,v]] of characteristic (rg,71,...,75). To
finish the proof use Lemma 7.1. O

Let us keep the notations and assumptions introduced at the beginning of this
section. Let f(z,y) = 0 be the minimal equation of an affine irreducible curve T
with one branch at infinity. Define

degs(9) = Y i(f,g:P)
PeK?

for any polynomial g such that f does not divide g in K[z,y]. Clearly deg,(gg") =
deg;(g) + deg;(g') and the subset of N defined by

W(f):={degf(9) € N : g# 0mod (f)}
is a semigroup. Observe that deg;(z) = n and deg;(y) =n —n'.

Lemma 7.3. deg;(g9+¢') < max{deg;(g),deg(g')} provided that f does not divide

/

99 -
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Proof. Let Os, = (1 : 0 : 0) be the unique point at infinity of I and let u = %,
v = % be the affine coordinates centered at Ou,. Let foo (u,v) = 0 and goo(u,v) =0
be the affine equations of the projective curves F' = 0 and G = 0. Since G(X,Y, Z)
is the homogeneous form corresponding to g(x,y) then g(z,y) = G(x,y,1) and
w = goo (¥%,%), where m = degg = degG. Let (u(t),v(t)) be a good
parametrization of the algebroid curve foo(u,v) = 0. Then, by Bézout’s theorem
degs(g) = degfdegg —io(foo:goo) = ord (v(t))™ — ord goo(u(t),v(t))
1 1

o OO _ g SO oy (110 )

(v(0)) (v(®)) o) v(t)

and the lemma follows from the last equality. O

Now, let us state

Theorem 7.4 (Abhyankar-Moh Semigroup Theorem). Let T be an irreducible affine
curve with one branch at infinity of degree n > 1. Assume that I is permissible and
let (rg, . ..,7n) be the characteristic of T' at infinity with ro = n = degT". Let dg = 79,
0 = g—i —rg, fork=1,... h. Then

1. The integers dg, . . . , O, are positive and ged(dg, ..., 0k—1) = di fork =1,..., h+

1.

2. 01 < g and O, < ng_16k_1 fork=2,..., h.

8. npdp € Nog+---+Nop_1 fork=1,...,h.

4. W(f)=Ndbg+ ---+ Noy.

Proof. The first and the second statement follow from the Abhyankar-Moh inequal-
ity which implies d; > 0 for £k = 1,...,h and from the corresponding properties of
the sequence rq, ..., 7.

In order to prove the third and fourth statements, let us return to the notations

and assumptions from the beginning of this section. In particular, the minimal

polynomial of ' is of the form f(z,y) = y" + a1(x)y"" ' + -+ + a,(z), where

degay(z) < kfor k=1,...,n and foo(u,v) = u” +vay () u""' +-- +v"a, (1)
Y 1

in the coordinates u = £, v = _. If d is invertible in K then the approximate roots

J/f (with respect to y) and /f., (with respect to u) exist and /fo = (\d/f)oo
by equality (6.1) in Proposition 6.1. Assume that I' is permissible, that is, dy =
ged(rg,m1) = ged(n,n’) Z 0 (mod char K). Then the approximate roots %4/f,
k =2,...,h exist and again by equality (6.1) in Proposition 6.1, the total degree of
&/ f is - O
Lemma 7.5. Suppose that d, Z 0 mod char K for some k € {1,...,h}. Then
deg; (%/f) =6 fork=1,... h.
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Proof. By Bézout’s theorem and the Abhyankar-Moh Theorem on approximate
roots we get
2

dogy (W/F) = dexf-deg VT —io (foor (W/F) ) = 5 0 (e VFx)

n2

= L =0
dk Tk k

O

Since dy #Z 0 (mod char K ) we have di # 0 (mod char K ) for kK > 2 and the
approximate roots %/f exist for k > 2.

Lemma 7.6. Let fi = y and fr = %/f for k = 2,...,h. Any polynomial g €
K[z, y] of y-degree strictly less than n has a unique expansion of the form

g = Zgul,...,ah (fl)al e (fh)ah )

where go, ... .o, € Klz] and 0 < a1 <n1,...,0 < ayp < ny. Moreover,
1. The y-degrees of the terms appearing in the right-hand side of the preceding
equality are all distinct.
2. The degrees with respect to f

degs (9o ,....om (fO)™ - (fn)™) = abo + -+ andp, where ag = deg ga,.....an,

are pairwise distinct.

Proof. The existence and uniqueness of the expansion and the inequality of the y-
degrees holds for polynomials with coefficients in arbitrary integral domain (see [1,
Section 2]). The degrees with respect to f are pairwise distinct by the uniqueness
of Bézout’s relation. O

Let g € K[z,y] and let g € K|x,y], deg, g < n be the remainder of the Euclidean
division of g by f. Then deg; g = deg;g. Therefore, by Lemma 7.6, we get

W(f) = {deg;g : deg,g <nandg# 0}
= {agbo+ -+ apdp : 0<ap and 0 < <ngfor k=1,... h}.

Therefore W(f) = Nog+- - -+NJp, and the sequence dy, . . ., d5 is nice by Proposition
5.8.

Using the Abhyankar-Moh Semigroup Theorem we can prove the Embedding Line
without resorting to the genus formula. Let I' C K? be an embedded line. Set
n =degT, n’ = multo_T and assume that I is permissible. Let f(x,y) = 0 be the
minimal equation of I" and let (p(t), ¢(t)) € K[t} be the polynomial parametrization
of I'. One checks that deg;(g) = deg g(p(t),q(t)) (see the proof of Proposition 3.5)
and consequently

W(f) = {degg(p(t),a(t)) : g(z,y) € K[z, y], g(p(t),q(t)) # 0}.
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Since I' is an embedded line there exists a polynomial g(z, y) such that g(p(t), ¢(t)) =
t. Therefore 1 € W(f), W(f) = N and the conductor v of W(f) is equal to 0. Since
the sequence dy, ..., 0, is nice, we have by the third part of Proposition 5.7 that
v = ZZ:1(nk — 16, — 6o + 1. By Property 5.2 v = 0 implies 0y = dgy1. In
particular, §; = da = ged(dp,01) and 67 divides dg, which proves Theorem 6.4 since
dp=nand d; =n—n'.

A numerical semigroup G generated by a sequence of positive integers dy, ..., dp is
called planar if it verifies
1. If dj, = ged(8g, ..., 0p_1) for 1 <k < h+1 and ny = dfil’ 1 < k < h, then
dpy1=1land ng > 1for 1 <k <h.
2. For 1 < k < h, nid; belongs to Nég + -+ - + Nog_1.
3. 51@ < nk,15k,1 for k = 2, .. .,h.

The semigroup W(f) termed also Weierstrass semigroup is planar.
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