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Abstract The Milnor formula μ = 2δ − r + 1 relates the Milnor number μ, the
double point number δ and the number r of branches of a plane curve singularity.
It holds over the fields of characteristic zero. Melle and Wall based on a result
by Deligne proved the inequality μ ≥ 2δ − r + 1 in arbitrary characteristic and
showed that the equality μ = 2δ − r + 1 characterizes the singularities with no wild
vanishing cycles. In this note we give an account of results on the Milnor formula
in characteristic p. It holds if the plane singularity is Newton non-degenerate
(Boubakri et al. Rev. Mat. Complut. 25:61–85, 2010) or if p is greater than the
intersection number of the singularity with its generic polar (Nguyen Annales de
l’Institut Fourier, Tome 66(5):2047–2066, 2016). Then we improve our result on
the Milnor number of irreducible singularities (Bull. Lond. Math. Soc. 48:94–98,
2016). Our considerations are based on the properties of polars of plane singularities
in characteristic p.

2010 Mathematics Subject Classification Primary 14H20; Secondary 32S05.

E. R. García Barroso (�)
Departamento de Matemáticas, Estadística e I.O. Sección de Matemáticas, Universidad de La
Laguna, La Laguna, España
e-mail: ergarcia@ull.es

A. Płoski
Department of Mathematics and Physics, Kielce University of Technology, Kielce, Poland
e-mail: matap@tu.kielce.pl

© Springer Nature Switzerland AG 2018
G.-M. Greuel et al. (eds.), Singularities, Algebraic Geometry, Commutative
Algebra, and Related Topics, https://doi.org/10.1007/978-3-319-96827-8_5

119

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-96827-8_5&domain=pdf
mailto:ergarcia@ull.es
mailto:matap@tu.kielce.pl
https://doi.org/10.1007/978-3-319-96827-8_5


120 E. R. García Barroso and A. Płoski

1 Introduction

John Milnor proved in his celebrated book [17] the formula

μ = 2δ − r + 1, (M)

where μ is the Milnor number, δ the double point number and r the number of
branches of a plane curve singularity. The Milnor’s proof of (M) is based on
topological considerations. A proof given by Risler [21] is algebraic and shows
that (M) holds in characteristic zero.

On the other hand Melle and Wall based on a result by Deligne [5] proved the
inequality μ ≥ 2δ − r + 1 in arbitrary characteristic and showed that the Milnor
formula holds if and only if the singularity has not wild vanishing cycles [16]. In the
sequel we will call a tame singularity any plane curve singularity verifying (M).

Recently some papers on the singularities satisfying (M) in characteristic p

appeared. In [1] the authors showed that planar Newton non-degenerate singularities
are tame. Different notions of non-degeneracy for plane curve singularities are
discussed in [10]. In [18] the author proved that if the characteristic p is greater
than the kappa invariant then the singularity is tame. In [7] and [11] the case of
irreducible singularities is investigated. Our aim is to give an account of the above-
mentioned results.

In Sect. 2 we prove that any semi-quasihomogeneous singularity is tame. Our
proof is different from that given in [1] and can be extended to the case of
Kouchnirenko nondegenerate singularities ([1, Theorem 9]). In Sects. 3 and 4 we
generalize Teissier’s lemma ([22, Chap. II, Proposition 1.2]) relating the intersection
number of the singularity with its polar and the Minor number to the case of arbitrary
characteristic and reprove the result due to H.D. Nguyen [18, Corollary 3.2] in the
following form: if p > μ(f ) + ord(f ) − 1 then the singularity is tame.

Section 5 is devoted to the strengthened version of our result on the Milnor
number of irreducible singularities.

2 Semi-quasihomogeneous Singularities

Let K be an algebraically closed field of characteristic p ≥ 0. For any formal power
series f ∈ K[[x, y]] we denote by ord(f ) (resp. in(f )) the order (resp. the initial
form of f ). A power series l ∈ K[[x, y]] is called a regular parameter if ord(l) = 1.
A plane curve singularity (in short: a singularity) is a nonzero power series f of
order greater than one. For any power series f, g ∈ K[[x, y]] we put i0(f, g) :=
dimK K[[x, y]]/(f, g) and called it the intersection number of f and g. The Milnor
number of f is

μ(f ) := dimK K[[x, y]]/
(

∂f

∂x
,
∂f

∂y

)
.
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If Φ is an automorphism of K[[x, y]] then μ(f ) = μ(Φ(f )) (see [1, p. 62]). If
the characteristic of K is p = char K > 0 then we can have μ(f ) = +∞ and
μ(uf ) < +∞ for a unit u ∈ K[[x, y]] (take f = xp + yp−1 and u = 1 + x).

Let f ∈ K[[x, y]] be a reduced (without multiple factors) power series and
consider a regular parameter l ∈ K[[x, y]]. Assume that l does not divide f . We
call the polar of f with respect to l the power series

Pl (f ) = ∂(f, l)

∂(x, y)
= ∂f

∂x

∂l

∂y
− ∂f

∂y

∂l

∂x
.

If l = −bx + ay for (a, b) �= (0, 0) then Pl (f ) = a
∂f
∂x

+ b
∂f
∂y

.

For any reduced power series f we put Of = K[[x, y]]/(f ), Of the integral
closure of Of in the total quotient ring of Of and δ(f ) = dimK Of /Of (the double
point number). Let C be the conductor of Of , that is the largest ideal in Of which
remains an ideal in Of . We define c(f ) = dimK Of /C (the degree of conductor)
and r(f ) the number of irreducible factors of f . The semigroup Γ (f ) associated
with the irreducible power series f is defined as the set of intersection numbers
i0(f, h), where h runs over power series such that h �≡ 0 (mod f ).

The degree of conductor c(f ) is equal to the smallest element c of Γ (f ) such
that c + N ∈ Γ (f ) for all integers N ≥ 0 (see [2, 9]).

For any reduced power series f we define

μ(f ) := c(f ) − r(f ) + 1.

In particular, if f is irreducible then μ(f ) = c(f ).

Proposition 2.1 Let f = f1 · · · fr ∈ K[[x, y]] be a reduced power series, where
fi is irreducible for i = 1, . . . , r . Then

(i) μ(f ) = μ(uf ) for any unit u of K[[x, y]].
(ii)

μ(f ) + r − 1 =
r∑

i=1

μ(fi) + 2
∑

1≤i<j≤r

i0(fi , fj ).

(iii) Let l be a regular parameter such that i0(fi , l) �≡ 0 (mod p) for i = 1, . . . , r .
Then

i0(f,Pl (f )) = μ(f ) + i0(f, l) − 1.

(iv) μ(f ) = μ(f ) if and only if μ(f ) = 2δ(f ) − r(f ) + 1.
(v) μ(f ) ≥ 0 and μ(f ) = 0 if and only if ord(f ) = 1.
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Proof Property (i) is obvious. To check (ii) observe that

r∑
i=1

μ(fi)+2
∑

1≤i<j≤r

i0(fi, fj ) =
r∑

i=1

c(fi)+2
∑

1≤i<j≤r

i0(fi, fj ) = c(f ) = μ(f )+r−1,

by [3, Lemma 2.1, p. 381]. Property (iii) in the case r = 1 reduces to the Dedekind
formula i0(f,Pl (f )) = c(f ) + i0(f, l) − 1 provided that i0(f, l) �≡ 0 (mod p)
[7, Lemma 3.1]. To check the general case we apply the Dedekind formula to the
irreducible factors fi of f and we get

i0(f,Pl (f )) =
r∑

i=1

i0(fi ,Pl (f )) =
r∑

i=1

i0

(
fi,Pl (fi)

f

fi

)

=
r∑

i=1

⎛
⎝i0(fi ,Pl (fi)) +

∑
j �=i

i0(fi , fj )

⎞
⎠

=
r∑

i=1

⎛
⎝μ(fi) + i0(fi , l) − 1 +

∑
j �=i

i0(fi , fj )

⎞
⎠

=
r∑

i=1

μ(fi) + 2
∑

1≤i<j≤r

i0(fi , fj ) + i0(f, l) − r

= μ(f ) + r − 1 + i0(f, l) − r = μ(f ) + i0(f, l) − 1.

Property (iv) follows since c(f ) = 2δ(f ) for any reduced power series f by the
Gorenstein theorem (see for example [20, Section 5]).

Now we prove Property (v). If f is irreducible then μ(f ) = c(f ) ≥ 0 with
equality if and only if ord(f ) = 1. Suppose that r > 1. Then by (ii) we get

μ(f ) + r − 1 ≥ 2
∑

1≤i<j≤r

i0(fi, fj ) ≥ r(r − 1)

and μ(f ) ≥ (r − 1)2 > 0, which proves (v).

Remark 2.2 Using Proposition 2.1(ii) we check the following property:
Let f = g1 · · · gs ∈ K[[x, y]] be a reduced power series, where the power series

gi for i = 1, . . . , s are pairwise coprime. Then

μ(f ) + s − 1 =
s∑

i=1

μ(gi) + 2
∑

1≤i<j≤s

i0(gi , gj ).
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Let −→w = (n,m) ∈ (N+)2 be a pair of strictly positive integers. In the sequel we call−→w a weight.
Let f = ∑

cαβxαyβ ∈ K[[x, y]] be a power series. Then

• the −→w -order of f is ord−→w (f ) = inf{αn + βm : cαβ �= 0},
• the −→w -initial form of f is in−→w (f ) = ∑

αn+βm=w cαβxαyβ, where w =
ord−→w (f ),

• R−→w (f ) = f − in−→w (f ).

Thus R−→w (f ) is a power series of −→w -order greater than ord−→w (f ).
Note that ord−→w (x) = n and ord−→w (y) = m.
A power series f is semi-quasihomogeneous (with respect to −→w ) if the system

of equations

⎧⎪⎨
⎪⎩

∂
∂x

in−→w (f ) = 0,

∂
∂y

in−→w (f ) = 0

has the only solution (x, y) = (0, 0).
A power series f is convenient if f (x, 0) · f (0, y) �= 0.
Suppose that in−→w (f ) is convenient and the line αn + βm = ord−→w (f ) intersects

the axes in points (m, 0) and (0, n). Let d = gcd(m, n). Then in−→w (f ) =
F(xm/d, yn/d), where F(u, v) ∈ K[u, v] is a homogeneous polynomial of degree d .

Proposition 2.3 Suppose that in−→w (f ) has no multiple factors. Then

μ(f ) =
(

ord−→w (f )

n
− 1

)
·
(

ord−→w (f )

m
− 1

)
.

Proof In the proof we will use lemmas collected in the Appendix.
Observe that if in−→w (f ) has no multiple factors then in−→w (f ) = m−→w (f )(

in−→w (f )
)o, where m−→w (f ) ∈ {1, x, y, xy} and

(
in−→w (f )

)o is a convenient power
series or a constant. To prove the proposition we will use Hensel’s Lemma (see
Lemma A.3) and Remark 2.2. We have to consider several cases.

Case 1: in−→w (f ) = (const) · x or in−→w (f ) = (const) · y.
In this case ord(f ) = 1 and by Proposition 2.1(v) μ(f ) = 0. If in−→w (f ) =
(const) · x (resp. in−→w (f ) = (const) · y) then ord−→w (f ) = n (resp. ord−→w (f ) = m)
and

(
ord−→w (f )

n
− 1

) (
ord−→w (f )

m
− 1

)
= 0.
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Case 2: in−→w (f ) = (const) · xy.

By Hensel’s Lemma (see Lemma A.3) f = f1f2, where in−→w (f1) = c1x,
in−→w (f2) = c2y with constants c1, c2 �= 0. Using Remark 2.2 and Lemma A.1
we get

μ(f ) + 1 = μ(f1f2) + 1 = μ(f1) + μ(f2) + 2i0(f1, f2) = 0 + 0 + 2.1

and μ(f ) = 1. On the other hand ord−→w (f ) = n + m and

(
ord−→w (f )

n
− 1

) (
ord−→w (f )

m
− 1

)
= 1.

Case 3: The power series in−→w f is convenient.
Assume additionally that the line nα + mβ = ord−→w (f ) intersects the axes in
points (m, 0) and (0, n). Let d = gcd(n,m). Then the −→w -initial form of f is

in−→w f =
d∏

i=1

(
aix

m/d + biy
n/d

)
,

where aix
m/d + biy

n/d are pairwise coprime. By Hensel’s Lemma (see
Lemma A.3) we get a factorization f = ∏d

i=1 fi , where in−→w fi = aix
m/d +

biy
n/d for i = 1, . . . , d . The factors fi are irreducible with semigroup

Γ (fi) = m
d

N + n
d

N and

μ(fi) = c(fi) =
(m

d
− 1

)(n

d
− 1

)

(see, for example [6]). Moreover by Lemma A.1 we have

i0(fi , fj ) = ord−→w fiord−→w fj

mn
= mn

d2 , for i �= j

and we get by Proposition 2.1(ii)

μ(f )+d −1 =
d∑

i=1

μ(fi)+2
∑

1≤i<j≤d

i0(fi , fj ) = d
(m

d
− 1

)(n

d
− 1

)
+2

d(d − 1)

2

mn

d2
,

which implies μ(f ) = (m − 1)(n − 1) =
(

ord−→
w f

n
− 1

) (
ord−→

w f

m
− 1

)
, since the

weighted order of f is ord−→w f = mn.
Now consider the general case, that is when the line nα + mβ = ord−→w (f )

intersects the axes in points (m1, 0) =
(

ord−→w f

n
, 0

)
and (0, n1) =

(
0,

ord−→w (f )

m

)
.

Then f is semi-quasihomogeneous with respect to −→w1 = (n1,m1) and the line
n1α + m1β = ord−→w1

(f ) intersects the axes in points (m1, 0) and (0, n1). By the



On the Milnor Formula in Arbitrary Characteristic 125

first part of the proof we get

μ(f ) = (m1 − 1)(n1 − 1) =
(

ord−→w (f )

n
− 1

)(
ord−→w (f )

m
− 1

)
,

which proves the proposition in Case 3.
Case 4: in−→w (f ) = x

(
in−→w (f )

)o or in−→w (f ) = y
(
in−→w (f )

)o, where
(
in−→w (f )

)o is
convenient.
This case follows from Hensel’s Lemma (Lemma A.3), Cases 1 and 3.

Case 5: in−→w (f ) = xy
(
in−→w (f )

)o, where
(
in−→w (f )

)o is convenient.
This case follows from Hensel’s Lemma (Lemma A.3), Cases 2 and 3.

Theorem 2.4 Suppose that in−→w (f ) has no multiple factors. Then f is tame if and
only if f is a semi-quasihomogeneous singularity with respect to −→w .

Proof We have μ(f ) =
(

ord−→w (f )

n
− 1

) (
ord−→w (f )

m
− 1

)
by Proposition 2.3. On the

other hand, by Lemma A.2, we get that μ(f ) =
(

ord−→
w (f )

n
− 1

) (
ord−→

w (f )

m
− 1

)
if

and only if the system of equations

⎧⎪⎨
⎪⎩

∂
∂x

in−→w (f ) = 0,

∂
∂y

in−→w (f ) = 0

has the only solution (x, y) = (0, 0). The theorem follows from Proposition 2.1(iv).

Example 2.5 Let f (x, y) = xm + yn + ∑
αn+βm>nm cα βxαyβ and let d =

gcd(m, n). Then in−→w (f ) = xm + yn has no multiple factors if and only if d �≡ 0
(mod p). If d �≡ 0 (mod p) then f is tame if and only if m �≡ 0 (mod p) and n �≡ 0
(mod p).

Corollary 2.6 The semi-quasihomogeneous singularities are tame.

Corollary 2.6 is a particular case of the following

Theorem 2.7 (Boubakri, Greuel, Markwig [1, Theorem 9].) The planar Newton
non-degenerate singularities are tame.

3 Teissier’s Lemma in Characteristic p ≥ 0

The intersection theoretical approach to the Milnor number in characteristic zero [4]
is based on a lemma due to Teissier who proved a more general result (the case of
hypersurfaces) in [22, Chapter II, Proposition 1.2]. A general formula on isolated
complete intersection singularity is due to Greuel [8] and Lê [14]. In this section we
study Teissier’s Lemma in arbitrary characteristic p ≥ 0.
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Let f ∈ K[[x, y]] be a reduced power series and l ∈ K[[x, y]] be a regular
parameter. Assume that l does not divide f and consider the polar Pl (f ) = ∂f

∂x
∂l
∂y

−
∂f
∂y

∂l
∂x

of f with respect to l. In this section we assume, without loss of generality,
that ord(l(0, y)) = 1.

Lemma 3.1 Let f ∈ K[[x, y]] be a reduced power series and l ∈ K[[x, y]] be
a regular parameter. Then i0 (l,Pl (f )) ≥ i0(f, l) − 1 with equality if and only if
i0(f, l) �≡ 0 (mod p).

Proof Recall that ord(l(0, y)) = 1. Let φ(t) = (φ1(t), φ2(t)) be a good
parametrization of the curve l(x, y) = 0 (see [19, Section 2]). In particular
0 = l(φ(t)) so d

dt
l(φ(t)) = 0. On the other hand we have ord(φ1(t)) = i0(x, l) =

ord(l(0, y)) = 1 and φ′
1(0) �= 0. Differentiating f (φ(t)) and l(φ(t)) we get

d

dt
f (φ(t)) = ∂f

∂x
(φ(t))φ′

1(t) + ∂f

∂y
(φ(t))φ′

2(t) (1)

and

0 = d

dt
l(φ(t)) = ∂l

∂x
(φ(t))φ′

1(t) + ∂l

∂y
(φ(t))φ′

2(t). (2)

From (2) we have ∂l
∂x

(φ(t))φ′
1(t) = − ∂l

∂y
(φ(t))φ′

2(t) and by (1) and the definition
of Pl (f ) we get

Pl (f )(φ(t))φ′
1(t) = d

dt
f (φ(t))

∂l

∂y
(φ(t)).

Since φ′
1(t) and ∂l

∂y
(φ(t)) are units in K[[t]] we have

ord(Pl (f )(φ(t))) = ord

(
d

dt
f (φ(t))

)
≥ ord(f (φ(t))) − 1,

with equality if and only if ord(f (φ(t))) �≡ 0 (mod p). Now the lemma follows
from the formula i0(h, l) = ord(h(φ(t))) which holds for every power series h ∈
K[[x, y]].
Corollary 3.2 Suppose that i0(f, l) = ord(f ) �≡ 0 (mod p) for a regular
parameter l ∈ K[[x, y]]. Then
(a) i0(l,Pl (f )) = ord(f ) − 1,
(b) ord(Pl (f )) = ord(f ) − 1,
(c) if h is an irreducible factor ofPl (f ) then i0(l, h) = ord(h).

Proof Property (a) follows immediately from Lemma 3.1. To check (b) observe that
we get ord(Pl (f )) = ord(Pl (f )) ·ord(l) ≤ i0(l,Pl (f )) = ord(f )− 1, where the
last equality follows from (a). The inequality ord(Pl (f )) ≥ ord(f ) − 1 is obvious.
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Let Pl (f ) = ∏s
i=1 hi , where hi is irreducible. From (a) and (b) we get

0 = i0(l,Pl (f )) − ord(Pl (f )) =
s∑

i=1

(i0(l, hi) − ord(hi)) .

Since i0(l, hi) ≥ ord(hi) we have i0(l, hi) = ord(hi) for i = 1, . . . , s which proves
(c).

Proposition 3.3 (Teissier’s Lemma in characteristic p.) Let f ∈ K[[x, y]] be a
reduced power series. Suppose that

(i) i0(f, l) �≡ 0 (mod p),
(ii) for any irreducible factor h ofPl (f ) we get i0(l, h) �≡ 0 (mod p).

Then

i0(f,Pl (f )) ≤ μ(f ) + i0(f, l) − 1

with equality if and only if

(iii) for any irreducible factor h ofPl (f ) we get i0(f, h) �≡ 0 (mod p).

Proof Fix an irreducible factor h of Pl (f ) and let ψ(t) = (ψ1(t), ψ2(t)) be a
good parametrization of the curve h(x, y) = 0. Then ord(l(ψ(t))) = i0(l, h) �≡ 0
(mod p) by (ii) and ord

(
d
dt

l(ψ(t))
) = ord(l(ψ(t))) − 1. Differentiating f (ψ(t))

and l(ψ(t)) we get

d

dt
f (ψ(t)) = ∂f

∂x
(ψ(t))ψ ′

1(t) + ∂f

∂y
(ψ(t))ψ ′

2(t), (3)

and

d

dt
l(ψ(t)) = ∂l

∂x
(ψ(t))ψ ′

1(t) + ∂l

∂y
(ψ(t))ψ ′

2(t). (4)

Since Pl (f )(ψ(t)) = 0, it follows from (3) and (4) that

d

dt
f (ψ(t))

∂l

∂y
(ψ(t)) = d

dt
l(ψ(t))

∂f

∂y
(ψ(t)). (5)

Since ∂l
∂y

(ψ(t)) is a unit in K[[t]], taking orders in (5) we have

ord(f (ψ(t))) − 1 ≤ ord

(
d

dt
f (ψ(t))

)
= ord

(
d

dt
l(ψ(t))

)
+ ord

(
∂f

∂y
(ψ(t))

)

= ord(l(ψ(t))) − 1 + ord

(
∂f

∂y
(ψ(t))

)
,
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where the last equality follows from ord(l(ψ(t))) �≡ 0 (mod p).

Hence i0(f, h) ≤ i0(l, h) + i0

(
∂f
∂y

, h
)

.

Summing up over all h counted with multiplicities as factors of Pl (f ) we obtain

i0(f,Pl (f )) ≤ i0(l,Pl (f )) + i0

(
∂f

∂y
,Pl (f )

)
. (6)

By Lemma 3.1 and assumption (i) we have i0 (l,Pl (f )) = i0(f, l) − 1. Moreover

i0

(
∂f
∂y

,Pl (f )
)

= μ(f ) since ord(l(0, y)) = 1 and we get from the equality (6)

i0(f,Pl (f )) ≤ μ(f ) + i0(f, l) − 1.

The equality holds if and only if i0(f, h) = i0(l, h) + i0

(
∂f
∂y

, h
)

for every h, which

is equivalent to the condition i0(f, h) �≡ 0 (mod p), since i0(f, h) �≡ 0 (mod p) if
and only if ord

(
d
dt

f (ψ(t))
) = ord(f (ψ(t))) − 1.

Corollary 3.4 (Teissier [22, Chapter II, Proposition 1.2]) If char K = 0 then

i0(f,Pl (f )) = μ(f ) + i0(f, l) − 1.

Corollary 3.5 Suppose that p = char K > ord(f ) and let i0(f, l) = ord(f ). Then

i0(Pl (f ), f ) ≤ μ(f ) + i0(f, l) − 1.

The equality holds if and only if for any irreducible factor h of Pl (f ) we get
i0(f, h) �≡ 0 (mod p).

Proof If ord(f ) < p then i0(f, l) = ord(f ) �≡ 0 (mod p) and by Corollary 3.2 for
any irreducible factor h of Pl (f ) we get

i0(l, h) = ord(h) ≤ ord(Pl (f )) = ord(f ) − 1 < p.

Hence i0(l, h) �≡ 0 (mod p) and the corollary follows from Proposition 3.3.

Example 3.6 Let f = xp+2 + yp+1 + xp+1y, where p = char K > 2. Take l = y.
Then i0(f, l) = p + 2 �≡ 0 (mod p), Pl (f ) = ∂f

∂x
= xp(2x +y) and the irreducible

factors of Pl (f ) are h1 = x and h2 = 2x + y. Clearly i0(l, h1) = i0(l, h2) =
1 �≡ 0 (mod p). Moreover i0(f, h1) = i0(f, h2) = p + 1 and all assumptions of
Proposition 3.3 are satisfied.

Hence i0(f,Pl (f )) = μ(f )+i0(f, l)−1 and μ(f ) = i0(f,Pl (f ))−i0(f, l)+
1 = p(p+1). Note that l = 0 is a curve of maximal contact with f = 0. Let l1 = x.
Then i0(f, l1) = ord(f ) = p+1,Pl1(f ) = −(yp+xp+1) and h = yp+xp+1 is the
only irreducible factor of the polar Pl1(f ). Since i0(l1, h) = p, the condition (ii)
of Proposition 3.3 is not satisfied. However, i0(f,Pl1(f )) = μ(f ) + i0(f, l1) − 1,

which we check directly.
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4 Tame Singularities

Assume that f is a plane curve singularity.

Proposition 4.1 Let f = f1 · · · fr ∈ K[[x, y]] be a reduced power series, where
fi is irreducible for i = 1, . . . , r . Suppose that there exists a regular parameter
l such that i0(fi , l) �≡ 0 (mod p) for i = 1, . . . , r . Then f is tame if and only if
Teissier’s lemma holds, that is if i0(f,Pl (f )) = μ(f ) + i0(f, l) − 1.

Proof By Proposition 2.1(iii) we have that i0(f,Pl (f )) = μ(f ) + i0(f, l) − 1.
Thus i0(f,Pl (f )) = μ(f ) + i0(f, l) − 1 if and only if μ(f ) = μ(f ). We finish
the proof using Proposition 2.1(iv).

Proposition 4.2 (Milnor [17], Risler [21]) If char K = 0 then any plane singular-
ity is tame.

Proof Teissier’s Lemma holds by Corollary 3.4. Use Proposition 4.1.

Proposition 4.3 Let p = char K > 0. Suppose that p > ord(f ). Let l be a
regular parameter such that i0(f, l) = ord(f ). Then f is tame if and only if for
any irreducible factor h of Pl(f ) we get i0(f, h) �≡ 0 (mod p).

Proof Take a regular parameter l such that i0(f, l) = ord(f ). By hypothesis we
get i0(f, l) < p so i0(f, l) �≡ 0 (mod p). By Corollary 3.2 the assumption (ii) of
Proposition 3.3 is satisfied.

Hence i0(f,Pl (f )) ≤ μ(f )+ i0(f, l)−1 with equality if and only if i0(f, h) �≡
0 (mod p) for any irreducible factor h of Pl (f ). Use Proposition 4.1.

Proposition 4.4 (Nguyen [18]) Let p = char K > 0. Suppose that there exists a
regular parameter l such that i0(f, l) = ord(f ) and i0(f,Pl (f )) < p. Then f is
tame.

Proof We have p > i0(f,Pl (f )) ≥ ord(f ) · ord(Pl(f )). Hence p > ord(f ) and
we may apply Proposition 4.3. Since i0(f,Pl (f )) < p for any irreducible factor
h of Pl (f ) we have that i0(f, h) < p and obviously i0(f, h) �≡ 0 (mod p). The
proposition follows from Proposition 4.3.

Theorem 4.5 (Nguyen [18]) If p > μ(f ) + ord(f ) − 1 then f is tame.

Proof Since f is a singularity we get μ(f ) > 0 and by hypothesis the characteristic
of the field verifies p > μ(f ) − 1 + ord(f ) ≥ ord(f ). By the first part of the proof
of Proposition 4.3 we have i0(f,Pl (f )) ≤ μ(f ) + ord(f ) − 1, where l is a regular
parameter such that i0(f, l) = ord(f ). Hence i0(f,Pl (f )) < p and the theorem
follows from Proposition 4.4.
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5 The Milnor Number of Plane Irreducible Singularities

Let f ∈ K[[x, y]] be an irreducible power series of order n = ord(f ) and let Γ (f )

be the semigroup associated with f = 0.
Let β0, . . . , βg be the minimal sequence of generators of Γ (f ) defined by the

conditions

• β0 = min(Γ (f )\{0}) = ord(f ) = n,
• βk = min(Γ (f )\Nβ0 + · · · + Nβk−1) for k ∈ {1, . . . , g},
• Γ (f ) = Nβ0 + · · · + Nβg.

Let ek = gcd(β0, . . . , βk) for k ∈ {1, . . . , g}. Then n = e0 > e1 > · · · eg−1 > eg =
1. Let nk = ek−1/ek for k ∈ {1, . . . , g}. We have nk > 1 for k ∈ {1, . . . , g} and
n = n1 · · ·ng . Let n∗ = max(n1, . . . , ng). Then n∗ ≤ n with equality if and only if
g = 1.

The following theorem is a sharpened version of the main result of [7].

Theorem 5.1 Let f ∈ K[[x, y]] be an irreducible power series of order n > 1
and let β0, . . . , βg be the minimal system of generators of Γ (f ). Suppose that p =
char K > n∗. Then the following two conditions are equivalent:

(i) βk �≡ 0 (mod p) for k ∈ {1, . . . , g},
(ii) f is tame.

In [7] the equivalence of (i) and (ii) is proved under the assumption that p > n.
If f ∈ K[[x, y]] is an irreducible power series then we get ord(f (x, 0)) =

ord(f ) or ord(f (0, y)) = ord(f ). In the sequel we assume that ord(f (0, y)) =
ord(f ) = n. The proof of Theorem 5.1 is based on Merle’s factorization theorem:

Theorem 5.2 (Merle [15], García Barroso-Płoski [7]) Suppose that ord(f (0, y))

= ord(f ) = n �≡ 0 (mod p). Then ∂f
∂y

= h1 · · ·hg in K[[x, y]], where
(a) ord(hk) = n

ek
− n

ek−1
for k ∈ {1, . . . , g}.

(b) If h ∈ K[[x, y]] is an irreducible factor of hk , k ∈ {1, . . . , g}, then
(b1) i0(f,h)

ord(h)
= ek−1βk

n
, and

(b2) ord(h) ≡ 0
(
mod n

ek−1

)
.

Lemma 5.3 Suppose that p > n∗. Then i0

(
f,

∂f
∂y

)
≤ μ(f ) + ord(f ) − 1 with

equality if and only if βk �≡ 0 (mod p) for k ∈ {0, . . . , g}.
Proof Obviously nk �≡ 0 (mod p) for k = 1, . . . , g and n = n1 · · ·ng �≡ 0 (mod p).
Let h be an irreducible factor of ∂f

∂y
. Then, by Corollary 3.2(c) i0(h, x) = ord(h). By

Theorem 5.2 (b2) ord(h) = mk
n

ek−1
, for an index k ∈ {1, . . . , g}, where mk ≥ 1 is an

integer. Hence mk
n

ek−1
= ord(h) ≤ ord(hk) = n

ek−1
(nk−1) and mk ≤ nk−1 < nk <

p, which implies mk �≡ 0 (mod p) and ord(h) �≡ 0 (mod p). By Proposition 3.3 we
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get i0

(
f,

∂f
∂y

)
≤ μ(f ) + ord(f ) − 1. By Theorem 5.2 (b1) we have the equalities

i0(f, h) =
(

ek−1βk

n

)
ord(h) = mkβk and we get i0(f, h) �≡ 0 (mod p) if and only if

βk �≡ 0 (mod p), which proves the second part of Lemma 5.3.

Proof of Theorem 5.1 Use Lemma 5.3 and Proposition 4.1.

Example 5.4 Let f (x, y) = (y2 + x3)2 + x5y. Then f is irreducible and its
semigroup is Γ (f ) = 4N + 6N + 13N. Here e0 = 4, e1 = 2, e2 = 1 and
n1 = n2 = 2. Hence n∗ = 2.

Let p > n∗ = 2. If p = char K �= 3, 13 then f is tame. On the other hand if
p = 2 then μ(f ) = +∞ since x is a common factor of ∂f

∂y
and ∂f

∂x
. Hence f is tame

if and only if p �= 2, 3, 13. Note that for any l with ord(l) = 1 we have i0(f, l) ≡ 0
(mod 2).

Proposition 5.5 If Γ (f ) = β0N+β1N then f is tame if and only if β0 �≡ 0 (mod p)

and β1 �≡ 0 (mod p).

Proof Let −→w = (β0, β1). There exists a system of coordinates x, y such that we can
write f = yβ0 + xβ1 + terms of weight greater than β0 β1. The proposition follows
from Theorem 2.4 (see also [7, Example 2]).

In [11] the authors proved, without any restriction on p = char K, the following
profound result:

Theorem 5.6 (Hefez, Rodrigues, Salomão [11, 12]) Let Γ (f ) = β0N + · · · +
βgN. If βk �≡ 0 (mod p) for k = 0, . . . , g then f is tame.

The question as to whether the converse of Theorem 5.6 is true remains open.

Acknowledgements The first-named author was partially supported by the Spanish Project MTM
2016-80659-P.

Appendix

Let −→w = (n,m) ∈ (N+)2 be a weight.

Lemma A.1 Let f, g ∈ K[[x, y]] be power series without constant term. Then

i0(f, g) ≥
(
ord−→w (f )

) (
ord−→w (g)

)
mn

,
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with equality if and only if the system of equations

⎧⎨
⎩

in−→w (f ) = 0,

in−→w (g) = 0

has the only solution (x, y) = (0, 0).

Proof By a basic property of the intersection multiplicity (see for example [19,
Proposition 3.8 (v)]) we have that for any nonzero power series f̃ , g̃

i0(f̃ , g̃) ≥ ord(f̃ )ord(g̃), (7)

with equality if and only if the system of equations in(f̃ ) = 0, in(g̃) = 0 has the
only solution (0, 0). Consider the power series f̃ (u, v) = f (un, vm) and g̃(u, v) =
g(un, vm). Then i0(f̃ , g̃) = i0(f, g)i0(u

n, vm) = i0(f, g)nm, ord(f̃ ) = ord−→w (f ),
ord(g̃) = ord−→w (g) and the lemma follows from (7).

Lemma A.2 Let f ∈ K[[x, y]] be a non-zero power series. Then

i0

(
∂f

∂x
,
∂f

∂y

)
≥

(
ord−→w (f )

n
− 1

) (
ord−→w (f )

m
− 1

)

with equality if and only if f is a semi-quasihomogeneous singularity with respect
to −→w .

Proof The following two properties are useful:

ord−→w
(

∂f

∂x

)
≥ ord−→w (f ) − n with equality if and only if

∂

∂x
in−→w (f ) �= 0, (8)

if
∂

∂x
in−→w (f ) �= 0 then in−→w

(
∂f

∂x

)
= ∂

∂x
in−→w (f ). (9)

By the first part of Lemma A.1 and Property (8) we get

i0

(
∂f

∂x
,
∂f

∂y

)
≥

(
ord−→w

(
∂f
∂x

)) (
ord−→w

(
∂f
∂y

))
nm

≥
(
ord−→w (f ) − n

) (
ord−→w (f ) − m

)
nm

=
(

ord−→w (f )

n
− 1

)(
ord−→w (f )

m
− 1

)
.

Using the second part of Lemma A.1 and Properties (8) and (9) we check

that i0

(
∂f
∂x

,
∂f
∂y

)
=

(
ord−→w (f )

n
− 1

) (
ord−→w (f )

m
− 1

)
if and only if f is a semi-

quasihomogeneous singularity with respect to −→w .
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Lemma A.3 (Hensel’s Lemma [13, Theorem 16.6]) Suppose that in−→w (f ) =
ψ1 · · · ψs with pairwise coprime ψi . Then f = g1 · · · gs ∈ K[[x, y]] with
in−→w (gi) = ψi for i = 1, . . . , s.
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