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ON THE INTERSECTION MULTIPLICITY OF PLANE BRANCHES

BY

EVELIA R. GARCÍA BARROSO (La Laguna) and ARKADIUSZ PŁOSKI (Kielce)

Abstract. We prove an intersection formula for two plane branches in terms of their
semigroups and key polynomials. Then we provide a strong version of Bayer’s theorem on
the set of intersection multiplicities of two branches with fixed characteristics and apply
it to the logarithmic distance in the space of branches.

1. Introduction. The traditional approach to the study of the singulari-
ties of irreducible plane algebroid curves (branches) defined over algebraically
closed fields of arbitrary characteristic is based on the Hamburger–Noether
expansions which encode the sequences of quadratic transformations appear-
ing in the desingularization of a curve (see [An], [C], [D1], [R]).

In [GB-P] we developed a new approach to the theory of plane branches.
We used the logarithmic distance on the set of branches without resorting to
the Hamburger–Noether expansions or to the resolution process. This note
is written in the spirit of [GB-P]. The concepts of semigroup associated with
a branch and key polynomials explained in [GB-P] play an important role.

Let f, g be irreducible power series inK[[x, y]], whereK is an algebraically
closed field. The intersection multiplicity i0(f, g) of branches {f = 0} and
{g = 0} is a basic notion of the local geometry of plane algebraic curves.
The classical formula for i0(f, g) allows one to calculate the intersection
multiplicity in terms of Puiseux parametrizations (see [vdW], [He]) when
charK = 0. If K has a positive characteristic, a similar result can be ob-
tained by using the Hamburger–Noether expansions (see [An], [C], [R]).
The aim of this note is to prove a formula for i0(f, g) in terms of semi-
groups Γ (f) and Γ (g) associated with f and g and key polynomials fi
and gj which define (in generic coordinates) the maximal contact curves
{fi = 0} and {gj = 0}. We impose no condition on the characteristic
of K.
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In Section 2 we recall the main properties of the semigroup and key
polynomials associated with a branch. In Sections 3 and 4 we present the
main result (Theorem 3.1) and its proof. Then we give in Section 5 an ap-
plication of the main result to polynomial automorphisms of the affine plane
(Theorem 5.2). In Section 6 we prove a strong version (due to Hefez in char-
acteristic 0) of Bayer’s theorem on the set of intersection multiplicities of
two branches with fixed characteristics (Theorem 6.1). Section 7 is devoted
to a short proof of a property of the logarithmic distance

d(f, g) =
i0(f, g)

ord f ord g

(Theorem 7.1) discovered by Abío et al. [Ab-Al-G] in the case of character-
istic 0.

2. Preliminaries. In this note we use the basic notions and theorems
of the theory of plane branches explained in [GB-P].

Let K be an algebraically closed field of arbitrary characteristic. For any
power series f, g ∈ K[[x, y]] we define the intersection multiplicity i0(f, g)
by putting

i0(f, g) = dimKK[[x, y]]/(f, g),

where (f, g) is the ideal of K[[x, y]] generated by f and g. If f, g are non-zero
power series without constant term then i0(f, g) <∞ if and only if f and g
are coprime.

Let f ∈ K[[x, y]] be an irreducible power series. By definition, the branch
{f = 0} is the ideal generated by f in K[[x, y]]. The multiplicity of {f = 0}
is the order of the power series f .

For any branch {f = 0} we put

Γ (f) = {i0(f, g) : g runs over all power series such that g 6≡ 0 (mod f)}.
Then Γ (f) is a semigroup. We call Γ (f) the semigroup associated with the
branch {f = 0}.

Two branches {f = 0} and {g = 0} are equisingular if Γ (f) = Γ (g).
The branch {f = 0} is non-singular (that is, of multiplicity 1) if and only if
Γ (f) = N. We have min(Γ (f) \ {0}) = ord f .

Let n > 0 be an integer. A sequence (v0, . . . , vh) of positive integers is
said to be an n-characteristic sequence if v0 = n and if the following two
conditions are fulfilled:

(char 1) Let ek = gcd(v0, . . . , vk) for 0 ≤ k ≤ h. Then n = e0 > e1 > · · ·
> eh = 1.

(char 2) ek−1vk < ekvk+1 for 1 ≤ k ≤ h− 1.

Let nk = ek−1/ek for 1 ≤ k ≤ h.
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Conditions (char 1) and (char 2) imply Bézout’s relation:

nkvk = a0v0 + a1v1 + · · ·+ ak−1vk−1,

where a0 > 0, 0 ≤ ai < ni for 1 ≤ i ≤ k are integers.
Let f = f(x, y) be an irreducible power series. Suppose that n = i0(f, x)

= ord f(0, y) <∞. Then the n-minimal system (v0, . . . , vh) of generators of
Γ (f) defined by the conditions:

(gen 1) v0 = n, vk is the smallest element of Γ (f) which does not belong to
v0N+ · · ·+ vk−1N,

(gen 2) v0N+ · · ·+ vhN = Γ (f),

is an n-characteristic sequence. We will call it the characteristic of {f = 0}
and write charx f = (v0, . . . , vh). If (v0, . . . , vh) is the n-minimal system of
generators of Γ (f) then the number c =

∑h
k=1(nk − 1)vk − v0 + 1 is the

conductor of Γ (f), that is, c+N ∈ Γ (f) for N ≥ 0 and c− 1 6∈ Γ (f).
There exists a sequence of monic polynomials f0, . . . , fh−1 ∈ K[[x]][y]

such that degy fk = n/ek and i0(f, fk) = vk+1 for k = 0, . . . , h− 1.
Recall that a monic polynomial p ∈ K[[x]][y] of y-degree n > 0 is dis-

tinguished if ord p(0, y) = n. By the Weierstrass Preparation Theorem there
is a unique distinguished polynomial fh ∈ K[[x]][y] associated with f . Then
degy fh = n = n/eh and i0(f, fh) =∞. We put vh+1 =∞.

The polynomials f0, . . . , fh ∈ K[[x]][y] are called key polynomials of f .
They are not uniquely determined by f . Recall that for any n-characteristic
sequence (v0, . . . , vh) there exists an irreducible series f such that Γ (f) =
v0N+ · · ·+ vhN and i0(f, x) = v0 (see [GB-P, Theorem 6.5]).

The basic properties of key polynomials are:

(key 1) A key polynomial fk is a distinguished, irreducible polynomial of
characteristic charx fk = (v0/ek, . . . , vk/ek), hence degy fk = v0/ek.

(key 2) Let (v0, . . . , vh) be an n-characteristic sequence. Let fk be an irre-
ducible distinguished polynomial with charx fk = (v0/ek, . . . , vk/ek).
Let f0, f1, . . . , fk−1 be a sequence of key polynomials of fk. Put
fi = fni

i−1 + ξix
ai,0f

ai,1
0 · · · fai,i−1

i−2 for i ∈ {k+1, . . . , h}, where nivi =
ai,0v0 + · · ·+ ai,i−1vi−1 is a Bézout relation and ξi ∈ K \ {0}. Then
charx fh = (v0, . . . , vh) and f0, . . . , fh−1 are key polynomials of fh.

(key 3) If g ∈ K[[x]][y] is a monic polynomial such that degy g = n/ek then
i0(f, g) ≤ i0(f, fk) = vk+1.

(key 4) Let {g = 0} 6= {x = 0} be a branch of characteristic (v′0, . . . , v′h′). Let
v0= i0(f, x)>1 and suppose i0(f, g)/i0(x, g)>i0(f,fk−1)/i0(x,fk−1)
for some k ∈ {1, . . . , h}. Then k ≤ h′ and vi/v0 = v′i/v

′
0 for all

i ∈ {1, . . . , k}. The first k key polynomials f0, . . . , fk−1 of f are the
first k elements of a sequence of key polynomials of g.
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For the proofs of (key 1) and (key 2) we refer the reader to [GB-P,
Proposition 4.2 and Theorem 6.1]. For the proof of (key 3) see [GB-P, Lemma
3.12]. For the proof of (key 4) see [GB-P, Theorem 5.2].

The following theorem is a local version of the Abhyankar–Moh result:

Abhyankar–Moh irreducibility criterion. Let f(x, y) ∈ K[[x, y]]
be an irreducible power series such that n = i0(f, x) < ∞ and let Γ (f) =
v0N+· · ·+vhN, where v0 = n. If g(x, y) ∈ K[[x, y]] is a power series such that
i0(g, x) = n and i0(f, g) > eh−1vh then g is irreducible and Γ (g) = Γ (f).

The proof of the above criterion is given in [GB-P, Corollary 5.8].

3. Main result. Let {f = 0} and {g = 0} be two branches different
from {x = 0}. Let charx f = (v0, . . . , vh), where v0 = n = i0(f, x) and
charx g = (v′0, . . . , v

′
h′), where v

′
0 = n′ = i0(g, x). We denote by f0, f1, . . . , fh

and g0, g1, . . . , gh′ a sequence of key polynomials of f and g, respectively.

Theorem 3.1 (Intersection formula). With the assumptions and nota-
tions introduced above, there is an integer 0 < k ≤ min{h, h′}+ 1 such that

(a) vi/n = v′i/n
′ for all i < k.

(b) i0(f, g) ≤ inf{e′k−1vk, ek−1v′k}.
(c) If i0(f, g) < inf{e′k−1vk, ek−1v′k} then i0(f, g) = ek−1e

′
k−1i0(fk−1, gk−1).

(d) Suppose that k > 1. Then i0(f, g) > inf{e′k−2vk−1, ek−2v′k−1}.

Moreover f0, . . . , fk−2 are the first k − 1 polynomials of a sequence of key
polynomials of g and g0, . . . , gk−2 are the first k−1 polynomials of a sequence
of key polynomials of f .

Remark 3.2. From the first part of Theorem 3.1 it follows that n/ei =
n′/e′i for i < k. In fact,

ne′i = n gcd(v′0, . . . , v
′
i) = gcd(nv′0, . . . , nv

′
i) = gcd(n′v0, . . . , n

′vi)

= n′ gcd(v0, . . . , vi) = n′ei.

Consequently, ni = n′i and e
′
i−1vi = ei−1v

′
i for 0 < i < k.

The proof of Theorem 3.1 is given in Section 4. Observe that the integer
k > 0 is the smallest integer such that condition (b) of Theorem 3.1 holds.

Corollary 3.3 (see [D2, Lemma 1.7]). Let k > 0 be the minimum
integer such that

i0(f, g) ≤ inf{e′k−1vk, ek−1v′k}.

Then

(1) vi/n = v′i/n
′ for all i < k.

(2) If i0(f, g) < inf{e′k−1vk, ek−1v′k} then i0(f, g) ≡ 0 (mod ek−1e
′
k−1).
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F. Delgado [D1, Section 3], [D2, pp. 335–336] computed the integer k > 0
in terms of the Hamburger–Noether expansions of f and g. In what follows
we do not need any additional information about k.

4. Proof of Theorem 3.1. For any branches {f = 0} and {g = 0}
different from the branch {x = 0} we put

dx(f, g) =
i0(f, g)

i0(f, x)i0(g, x)
.

The function dx satisfies the Strong Triangle Inequality (STI ): for any
branches {f = 0}, {g = 0} and {h = 0} different from {x = 0},

dx(f, g) ≥ inf{dx(f, h), dx(g, h)},
which is equivalent to: at least two of the numbers dx(f, g), dx(f, h), dx(g, h)
are equal and the third is no smaller than the other two (see [GB-P, Theo-
rem 2.8]).

Lemma 4.1. If n = 1 then i0(f, g) = inf{e′0i0(f0, g0), v′1}.
Proof. If n = 1 then e0 = 1, h = 0 and the only possible value for k, 0 <

k ≤ min(h+ 1, h′ + 1) is k = 1. Note that dx(f, g) = i0(f, g)/v
′
0, dx(f, g0) =

i0(f, g0), dx(g, g0) = v′1/v
′
0 6∈ N (if n′ = 1 then v′1 = +∞ and dx(g, g0) =

+∞). Therefore dx(f, g0) 6= dx(g, g0) and dx(f, g) = inf{dx(f, g0), dx(g, g0)},
which is equivalent to i0(f, g) = inf{e′0i0(f, g0), v′1} = inf{e′0i0(f0, g0), v′1},
since f0 is the distinguished polynomial associated with f .

Lemma 4.1 implies Theorem 3.1 for n = 1. So now we assume n > 1.
Let f0, . . . , fh be a sequence of key polynomials of f . Then dx(f, fk−1) =

ek−1vk/n
2. So the sequence dx(f, fk−1) for k = 1, . . . , h is strictly increasing.

Lemma 4.2. Suppose dx(f, g) > dx(f, fk−1) for an integer k ∈ {1, . . . , h}.
Then k ≤ h′, dx(f, fi−1) = dx(g, gi−1) for i = 1, . . . , k, and f0, . . . , fk−1 are
the first k − 1 polynomials of a sequence of key polynomials of g.

Proof. The lemma follows directly from (key 4).

Lemma 4.3. Let k ≤ min{h, h′} + 1. Suppose dx(f, fi−1) = dx(g, gi−1)
for 0 < i < k and dx(f, fk−1) 6= dx(g, gk−1). Then

dx(f, g) ≤ inf{dx(f, fk−1), dx(g, gk−1)}.
Proof. From dx(f, fi−1) = dx(g, gi−1) for 0 < i < k we get vi/n = v′i/n

′

and ei/n = e′i/n
′ for 0 < i < k. Thus degy fk−1 = n/ek−1 = n′/e′k−1 =

degy gk−1. We may assume that dx(g, gk−1) < dx(f, fk−1). Since degy fk−1 =
degy gk−1, we deduce, applying (key 3) to g, that i0(g, fk−1) ≤ i0(g, gk−1)
and consequently dx(g, fk−1) ≤ dx(g, gk−1). Thus dx(g, fk−1) < dx(f, fk−1),
and by the STI, dx(g, fk−1) = dx(f, g). Therefore dx(f, g) = dx(g, fk−1) ≤
dx(g, gk−1) = inf{dx(f, fk−1), dx(g, gk−1)}.
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Lemma 4.4. Let 0 < k ≤ h+1 be the smallest integer such that dx(f, g) ≤
dx(f, fk−1). Then k ≤ h′ + 1 and dx(f, g) ≤ dx(g, gk−1).

Proof. First we suppose that k = 1. Then the inequality k ≤ h′ + 1 is
obvious and the assertion follows from Lemma 4.3.

Suppose now that k > 1. By definition of k we have dx(f, g) > dx(f, fk−2).
Then by Lemma 4.2, k ≤ h′ + 1 and dx(f, fi−1) = dx(g, gi−1) for i =
1, . . . , k − 1. If dx(f, fk−1) = dx(g, gk−1) then the lemma is obvious. If
dx(f, fk−1) 6= dx(g, gk−1) then we use Lemma 4.3.

Proof of Theorem 3.1. Recall that n > 1. The assertions of the theorem
can be rewritten in the following form:

(a′) If k > 1 then dx(f, fi−1) = dx(g, gi−1) for all 0 < i < k.
(b′) dx(f, g) ≤ inf{dx(f, fk−1), dx(g, gk−1)}.
(c′) If dx(f, g)< inf{dx(f, fk−1), dx(g, gk−1)} then dx(f, g) = dx(fk−1, gk−1).
(d′) If k > 1 then dx(f, g) > inf{dx(f, fk−2), dx(g, gk−2)}.

To prove Theorem 3.1 let k ∈ {1, . . . , h+1} be the smallest integer such
that dx(f, g) ≤ dx(f, fk−1). Then for k > 1 we have dx(f, g) > dx(f, fk−2),
and by Lemma 4.2, k ≤ h′ + 1 and (a′) holds.

By Lemma 4.4 we get dx(f, g) ≤ dx(g, gk−1).
To check (c′), suppose dx(f, g) < dx(f, fk−1) and dx(f, g) < dx(g, gk−1).

Then by the STI, dx(g, fk−1) = dx(f, g) and dx(f, gk−1) = dx(f, g). Thus
dx(f, g) = dx(g, fk−1) < dx(g, gk−1) and applying again the STI to the power
series g, fk−1 and gk−1 we get

dx(fk−1, gk−1) = inf{dx(g, fk−1), dx(g, gk−1)} = dx(g, fk−1) = dx(f, g),

which proves (c′).
Suppose that k > 1. Then dx(f, g) > dx(f, fk−2) by the definition of k,

and dx(g, gk−2) = dx(f, fk−2) by (a′). This proves (d′). The assertion on the
key polynomials follows from Lemma 4.2.

5.Application topolynomial automorphisms. In [vdK] vanderKulk
proved a theorem on polynomial automorphisms of the plane generalizing a
previous result of Jung [J] to the case of arbitrary characteristic. The proof of
van der Kulk is based on a lemma on the intersection multiplicity of branches
proved using the Hamburger–Noether expansions (see also [R, Remark 6.3.1]).

As an application of our main result we prove here a property of intersec-
tion multiplicities of branches which implies van der Kulk’s lemma (see [P]
for char K = 0).

Proposition 5.1. Let {f = 0} and {g = 0} be two different branches
and let {l = 0} be a smooth branch. Suppose that n = i0(f, l) < ∞, n′ =
i0(g, l) <∞ and let d = gcd(n, n′). Then i0(f, g) ≡ 0 (mod n/d or n′/d).
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Proof. We may assume that n, n′ > 1 and l = x. Let k > 0 be the integer
as in Corollary 3.3. Then i0(f, g) ≤ inf{e′k−1vk, ek−1v′k}. We claim that

(5.1) i0(f, g) ≡ 0 (mod ek−1 or e′k−1).

In fact, this is clear when i0(f, g) = inf{e′k−1vk, ek−1v′k}. If i0(f, g) <
inf{e′k−1vk, ek−1v′k} then we infer (5.1) from the second part of Corollary 3.3.

By the first part of Corollary 3.3 and by Remark 3.2 we get

(5.2)
n

ei
=
n′

e′i
for i < k.

From (5.2) we have

(5.3) ek−1 ≡ 0 (mod n/d) and e′k−1 ≡ 0 (mod n′/d).

Now (5.1) and (5.3) imply the proposition.

Using Proposition 5.1 we will prove the following basic property of poly-
nomial automorphisms of the plane.

Theorem 5.2 ([vdK, Lemma on p. 36]). Let (P,Q) : K2 → K2 be a
polynomial automorphism. Then one of the two integersm=degP , n=degQ
divides the other.

Proof. Let C and D be projective curves with affine equations P = 0 and
Q = 0 respectively. Then degD = n, degC = m and each of the curves C,D
has exactly one branch at infinity (see [vdK, p. 37]). By Bézout’s theorem
these branches intersect with multiplicity i = mn − 1. The line at infinity
cuts the branches of C and D with multiplicities m and n respectively. Thus
by Proposition 5.1 we get i ≡ 0 (mod m/d or n/d), where d = gcd(m,n).
This implies that m divides n or n divides m, since i = mn− 1.

6. Intersection multiplicities of two branches. Let v = (v0, . . . , vh)
and v′=(v′0, . . . , v

′
h′) be two characteristic sequences. Put ei=gcd(v0, . . . , vi),

e′j = gcd(v′0, . . . , v
′
j) for 0 ≤ i ≤ h and 0 ≤ j ≤ h′. By convention,

vh+1 = v′h′+1 =∞ and e−1 = e′−1 = 0. Let

ρ := max

{
i ∈ N :

vj
v0

=
v′j
v′0

for j ≤ i, i ≤ min(h, h′)

}
and Ik := inf{ek−1v′k, e′k−1vk} for k = 1, . . . , ρ + 1. In particular I0 = 0.
Observe that ek−1v′k = e′k−1vk for 0 ≤ k ≤ ρ and I0 < I1 < · · · < Iρ+1. We
put N+ = {N ∈ N : N > 0}.

Let f, g run through the irreducible coprime series inK[[x, y]]. Using local
quadratic transformations, Bayer [B, Theorem 5] gave an explicit formula for
the set {i0(f, g) : charx f = v, charx g = v′} in terms of the characteristic
sequences v and v′.
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Hefez [He, proof of Theorem 8.5, pp. 116–117] proved a stronger result.
Apart from Bayer’s formula, he showed that for a fixed f0 with charx f0 = v,
we have

{i0(f0, g) : charx g = v′} = {i0(f, g) : charx f = v, charx g = v′}.
His proof, based on Puiseux’s theorem, works only in characteristic zero. The
following theorem is a strong version of Bayer’s result, proposed by Hefez.
The characteristic of K is arbitrary.

Theorem 6.1. Let {f = 0} be a branch such that charx f = v. Let B be
the set of branches {g = 0} such that charx g = v′ and i0(f, g) 6=∞. Then

{i0(f, g) : {g = 0} ∈ B}

=

ρ+1⋃
k=1

{N ∈ N+ : Ik−1 ≤ N < Ik and N ≡ 0 (mod ek−1e
′
k−1)}.

Corollary 6.2. Let {f = 0} be a branch such that charx f = v. Then

{i0(f, g) : charx f = charx g and i0(f, g) 6=∞}

=
h+1⋃
k=1

{N ∈ N+ : ek−2vk−1 ≤ N < ek−1vk and N ≡ 0 (mod e2k−1)}.

Corollary 6.3. Let {f = 0} be a branch such that charx f = v. Then
N0 = eh−1vh is the smallest natural number such that for any N ∈ N and
N ≥ N0 there exists an irreducible power series g ∈ K[[x, y]] such that
i0(f, g) = N .

To prove Theorem 6.1 we need two lemmas.

Lemma 6.4. For any integer k with 1 < k ≤ ρ + 1, there exists an
irreducible power series g ∈ K[[x, y]] such that i0(f, g) = Ik−1.

Proof. Suppose that k > 1 and let f0, . . . , fk−2 be key polynomials of f .
Let gi = fi for i = 0, . . . , k − 2 and gi = g

n′i
i−1 + ξix

ai,0g
ai,1
0 · · · gai,i−1

i−2 for
i = k−1, . . . , h′, where ξi ∈ K\{0}, n′i = e′i−1/e

′
i and ai,0v

′
0+ · · ·+ai,i−1v′i−1

= n′iv
′
i. By (key 2) we see that g0, . . . , gh′ are key polynomials of g := gh′

and charx fi = (v0/ei, . . . , vi/ei) = (v′0/e
′
i, . . . , v

′
i/e
′
i) for i = 0, . . . , k − 2.

We have

i0(f, x
ak−1,0g

ak−1,1

0 · · · gak−1,k−2

k−3 )

= ak−1,0i0(f, x) + ak−1,1i0(f, g0) + · · ·+ ak−1,k−2i0(f, gk−3)

= ak−1,0i0(f, x) + ak−1,1i0(f, f0) + · · ·+ ak−1,k−2i0(f, fk−3)

= ak−1,0v0 + ak−1,1v1 + · · ·+ ak−1,k−2vk−2
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= ek−2

(
ak−1,0

v0
ek−2

+ ak−1,1
v1
ek−2

+ · · ·+ ak−1,k−2
vk−2
ek−2

)
= ek−2

(
ak−1,0

v′0
e′k−2

+ ak−1,1
v′1
e′k−2

+ · · ·+ ak−1,k−2
v′k−2
e′k−2

)
=
ek−2
e′k−2

n′k−1v
′
k−1 =

n′k−1
e′k−2

ek−2v
′
k−1 =

n′k−1
e′k−2

e′k−2vk−1

= n′k−1vk−1 = n′k−1i0(f, fk−2) = i0(f, f
n′k−1

k−2 ) = i0(f, g
n′k−1

k−2 ).

Suppose that ξk−2 is generic. Then i0(f, gk−1) = i0(f, g
n′k−1

k−2 ) = n′k−1vk−1.
We get

dx(f, gk−1) =
n′k−1vk−1

v0(v′0/e
′
k−1)

=
e′k−1n

′
k−1vk−1

v0v′0
=
e′k−2vk−1

v0v′0
=
Ik−1
v0v′0

and

dx(g, gk−1) =
v′k

v′0(v
′
0/e
′
k−1)

=
e′k−1v

′
k

v′0v
′
0

=
ek−1v

′
k

v0v′0
=

Ik
v0v′0

.

Therefore dx(f, gk−1) < dx(g, gk−1), thus dx(f, g) = dx(f, gk−1), that is,
i0(f, g)

v0v′0
=
Ik−1
v0v′0

and i0(f, g) = Ik−1.

Lemma 6.5. Let {f = 0} be a branch with charx f = v. Let N be a
positive integer number such that N > eh−1vh. Then there exists a branch
{g = 0} such that i0(f, g) = N and charx g = charx f . Moreover f0, . . . , fh−1
are key polynomials of g.

Proof. Let c be the conductor of Γ (f). Then c = (n1 − 1)v1 + · · · +
(nh − 1)vh − v0 + 1 = (n1v1 − v1) + · · ·+ (nhvh − vh)− v0 + 1 < (v2 − v1) +
(v3− v2) + · · ·+ (eh−1vh− vh)− v0 +1 = eh−1vh− v0− v1 +1 < eh−1vh and
we may write N = a0v0 + · · ·+ ahvh, where ai ∈ N with a0 > 0. Let fk be a
key polynomial of f for k = 0, . . . , h− 1. Put

g := f + xa0fa10 · · · f
ah
h−1.

Then i0(x, g) = i0(x, f) since a0 > 0, and i0(f, g) = i0(f, x
a0fa10 · · · f

ah
h−1) =

a0v0 + · · ·+ ahvh = N . By the Abhyankar–Moh irreducibility criterion (see
Section 2), g is irreducible and charx g = charx f .

Observe that dx(f, g) = N/v20 > eh−1vh/v
2
0 ≥ ekvk+1/v

2
0 = dx(f, fk).

Thus, by the STI, we have dx(fk, g) = dx(fk, f), which implies i0(fk, g) =
i0(fk, f) = vk+1. Therefore fk is a key polynomial of g for k = 0, . . . , h−1.

Proof of Theorem 6.1. The inclusion “⊂” follows from Corollary 3.3. Let
N > 0 be an integer such that Ik−1 ≤ N < Ik and N ≡ 0 (mod ek−1e′k−1),
where 1 ≤ k ≤ ρ+1. We have to prove that there exists an irreducible power
series g ∈ K[[x, y]] such that charx g = v′ and i0(f, g) = N . If N = Ik−1 then



252 E. R. GARCÍA BARROSO AND A. PŁOSKI

the theorem follows from Lemma 6.4. Suppose that Ik−1 < N < Ik. Since
N ≡ 0 (mod ek−1e′k−1), we may writeN = ek−1e

′
k−1Nk−1 for someNk−1 ∈ N.

Let f0, . . . , fk−1 be key polynomials of f , where charx fi = (v0/ei, . . . , vi/ei) =
(v′0/e

′
i, . . . , v

′
i/e
′
i) for i = 0, . . . , k − 1 by the definition of ρ. Put gi := fi for

i = 0, . . . , k − 2.

Claim 1. There exists an irreducible power series gk−1 ∈ K[[x, y]] such
that charx gk−1 = charx fk−1 and i0(fk−1, gk−1) = Nk−1.

The claim follows from

gcd

(
v0
ek−1

, . . . ,
vk−2
ek−1

)
vk−1
ek−1

=
ek−2vk−1
e2k−1

=
e′k−2vk−1

e′k−1ek−1
=

Ik−1
ek−1e

′
k−1

<
N

ek−1e
′
k−1

= Nk−1,

and Lemma 6.5 applied to {fk−1 = 0}.
Claim 2. i0(f, gk−1) = ek−1Nk−1.

Indeed, if vρ+1 = ∞ then fρ is the distinguished polynomial associated
with f . Therefore i0(f, gρ) = i0(fρ, gρ) = Nρ (= eρNρ since eρ = 1) by
Claim 1.

Assume that vρ+1 6=∞. Then

dx(fk−1, gk−1) =
Nk−1

(v0/ek−1)(v
′
0/e
′
k−1)

=
N

v0v′0

<
Ik
v0v′0

≤
e′k−1vk

v0v′0
=
ek−1vk
v20

= dx(f, fk−1).

Therefore by the STI we have

dx(f, gk−1) = dx(fk−1, gk−1) =
N

v0v′0
and

i0(f, gk−1)

v0(v′0/e
′
k−1)

=
ek−1e

′
k−1Nk−1

v0v′0
,

which implies i0(f, gk−1) = ek−1Nk−1.
Let us now finish the proof of Theorem 6.1. Let g = gh′ . We will check

that dx(f, g) = dx(f, gk−1). Firstly suppose that v′ρ+1 = ∞. Then gρ is
the distinguished polynomial associated with g and dx(f, g) = dx(f, gρ). If
v′ρ+1 6=∞ then

dx(f, gk−1) =
ek−1Nk−1
v0(v′0/e

′
k−1)

=
N

v0v′0
,

dx(g, gk−1) =
v′k

v′0(v
′
0/e
′
k−1)

=
e′k−1v

′
k

v′0v
′
0

=
ek−1v

′
k

v0v′0
≥ Ik
v0v′0

>
N

v0v′0
= dx(f, gk−1),

and by the STI, dx(f, g) = dx(f, gk−1). Therefore
i0(f,g)
v0v′0

= N
v0v′0

and we get
i0(f, g) = N .
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7. A property of the logarithmic distance. Recall that the loga-
rithmic distance d(f, g) among two branches {f = 0} and {g = 0} is given
by

d(f, g) =
i0(f, g)

ord f ord g
.

Observe that d(f, g) = dx(f, g) when {x = 0} is transverse to {f = 0} and
{g = 0}.

If {f = 0} and {g = 0} have no common tangent then d(f, g) = 1. The
next theorem generalizes [Ab-Al-G, Theorem 2.7] to arbitrary characteristic.

Theorem 7.1. Let f ∈ K[[x, y]] be an irreducible power series and let
R > 1 be a rational number. Then there exists an irreducible power series
g ∈ K[[x, y]] such that d(f, g) = R.

Proof. Let charx f = (v0, . . . , vh), where v0 < v1. Fix a rational number
R > 1. We distinguish two cases:

Case 1: There exists an integer k, 1 ≤ k ≤ h, such that R = ek−1vk/v
2
0.

Then for the (k − 1)th key polynomial fk−1 of f we have i0(f, fk−1) = vk,
ord f = v0, ord fk−1 = v0/ek−1 and d(f, fk−1) = R.

Case 2: The number R is different from el−1vl/v
2
0 for l = 1, . . . , h. Then

there exists a unique k, 1 ≤ k ≤ h + 1, such that ek−2vk−1/v20 < R <
ek−1vk/v

2
0 (recall that e−1 = 0). Write

R =
r

(v0/ek−1)2s
,

where gcd(r, s) = 1. Let s > 1. Put

(v′0, . . . , v
′
k) =

(
s
v0
ek−1

, . . . , s
vk−1
ek−1

, r

)
.

We check that

(1) (v′0, . . . , v
′
k) is a characteristic sequence,

(2) v′1
e′0

= v1
e0
, . . . ,

v′k−1

e′0
=

vk−1

e0
and v′k

e′0
< vk

e0
, where e′i := gcd(v′0, . . . , v

′
i).

By Theorem 6.1 there exists an irreducible g such that charx g = (v′0, . . . , v
′
k)

and i0(f, g) = inf{e′k−1vk, ek−1v′k}. Therefore

d(f, g) =
i0(f, g)

v0v′0
= inf

{
e′k−1vk

e′0e0
,
ek−1v

′
k

e0e′0

}
=
ek−1v

′
k

e0e′0
= R.

Now let s = 1. Then R = re2k−1/v
2
0 and ek−2vk−1 < re2k−1 < ek−1vk.

By Corollary 6.2 there exists an irreducible power series g such that ord g =
ord f = v0 and i0(f, g) = re2k−1. Clearly d(f, g) = R.
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