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Abstract

In [G] Granja proved a factorization theorem for power series in two

variables which generalized the Merle theorem [M] on polar curves. Our

aim is to reprove his result without resorting to Hamburger-Noether

expansions and Apéry sequences. We base our proof on the method

developed by us in [GB-P l].
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1 Introduction

Let K be an algebraically closed field of characteristic p ≥ 0. Let

f ∈ K[[x, y]] be a non-zero power series with no constant term. An

algebroid curve {f = 0} is the ideal generated by f ∈ K[[x, y]]. We

say that {f = 0} is irreducible (respectively reduced) if f is irreducible

(respectively f has no multiple factors). The irreducible curves are also

called branches. The order ord f of the power series f is the multi-

plicity of the curve {f = 0}.
For any power series f, g ∈ K[[x, y]] we define the intersection

multiplicity (also called intersection number) by

i0(f, g) = dimKK[[x, y]]/(f, g),

where (f, g) is the ideal of K[[x, y]] generated by f and g. If f, g are

non-zero power series with no constant term we have i0(f, g) < +∞ if

and only if {f = 0} and {g = 0} have no common branch.

For any irreducible power series f ∈ K[[x, y]] we set

Γ(f) = {i0(f, g) : g runs over all power series such that g 6≡ 0 (mod f)}.

A subset of N is a semigroup if it is closed under addition and

it contains 0. Since we have i0(f, gh) = i0(f, g) + i0(f, h), then Γ(f)

should be a semigroup. We call Γ(f) the semigroup associated with

the branch {f = 0}.
Suppose that the branch {f = 0} is different from {x = 0}. Write

n = i0(f, x). Let (b0, . . . , bh), where b0 = n, be a n-minimal system of

generators of Γ(f) defined by the conditions

• b0 = n,

• bk = min
(
Γ(f)− (Nb0 + · · ·+ Nbk−1)

)
for 1 ≤ k ≤ h and,

• Γ(f) = Nb0 + · · ·+ Nbh

(cf. [4, Preliminaries]). Then we write charxf = (b0, . . . , bh). Note that

the semigroup Γ(f) is a numerical semigroup, i.e., it satisfies gcd(Γ(f)) =
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1. Let c(f) be the smallest element of Γ(f) such that c(f) + N ∈ Γ(f)

for any integer N ≥ 0 (compare [1, p. 136]). The number c(f) is called

the conductor of Γ(f).

Put ei = gcd(b0, . . . , bi) for 0 ≤ i ≤ h and ni =
ei−1

ei
for 1 ≤ i ≤ h.

We have nk > 1 for 1 ≤ k < h and eh = 1. The following theorem

is well-known, its proof employs Puiseux series when they are available,

that is, when the characteristic of the field K is zero or n is not a multiple

of it. We present a formulation of the theorem in use of key polynomials

instead of Puiseux series, since they are available without any restriction.

Theorem 1.1 (Semigroup theorem). With the assumptions and no-

tations introduced above, there exists a sequence of monic polynomials

f0, f1, . . . , fh−1 ∈ K[[x]][y] such that for 1 ≤ k ≤ h we have

(ak) degy(fk−1) =
n

ek−1
,

(bk) i0(fk−1, f) = bk,

(ck) if k > 1 then nk−1bk−1 < bk.

Proof. See [4, Theorem 3.2].

The polynomials f0, f1, . . . , fh−1 ∈ K[[x]][y] are called the key

polynomials of f . They are not uniquely determined by f .

Theorem 1.2 (Granja factorization theorem). Let {f = 0} be a branch

different from {x = 0}. Let charxf = (b0, . . . , bh), where b0 = n =

ord f(0, y) > 1. Fix k between 1 and h. Let g = g(x, y) be a power series

with no constant term, subject to i0(g, x) <
n

ek
and i0(f, g) =

∑k
i=1 λibi,

with 0 ≤ λi < ni, for 1 ≤ i ≤ k. Then there is a factorization g =

g1 · · · gk ∈ K[[x, y]] such that

• i0(gi, x) = λi
n

ei−1
for 1 ≤ i ≤ k,

• if λi > 0 and φ ∈ K[[x, y]] is an irreducible factor of gi, then
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(a)
i0(f, φ)

i0(φ, x)
=
ei−1bi
n

,

(b) i0(φ, x) ≡ 0 (mod n/ei−1).

We postpone the proof of Theorem 1.2 until Section 3.

A generalization of the Granja factorization theorem is due to Del-

gado [2, Section 2], who employs, like Granja, Hamburger-Noether ex-

pansions and Apéry sequences.

Example 1.3. Let f0, . . . , fh−1 be a sequence of key polynomials of f .

Fix k between 1 and h. Take g = fλ1
0 · · · f

λk

k−1. Then g satisfies the

assumptions of Theorem 1.2; here gi = fλi
i−1, for 1 ≤ i ≤ k. Also, if φ

is an irreducible factor of gi then φ = fi−1.unit. Clearly in this case we

should have
i0(f, φ)

i0(φ, x)
=
ei−1bi
n

and i0(φ, x) =
n

ei−1
.

Example 1.4. Suppose K is a field of characteristic different from 2.

The power series f(x, y) = (y2 − x3)2 − 4x5y − x7 is irreducible and we

have charxf = (4, 6, 13) (see [4, page 246]). Let k = 2. Obviously we

have λ1 = λ2 = 1. Take g(x, y) = y3 − x3y. Then we get i0(g, x) = 3 <
n

e2
= 4 and i0(f, g) = λ1b1+λ2b2. For g1 = y and g2 = y2−x3 we get g =

g1g2 and i0(g1, x) = 1, i0(g2, x) = 2. Now, for g̃ = y3 − x2y − x5 we get

i0(g̃, x) = 3 and i0(f, g̃) = 19. We have g̃ = g̃1g̃2 = (y+· · · )(y2−x3+· · · ),
where the dots denote higher order terms.

As a corollary of Theorem 1.2 we present the following result.

Theorem 1.5 (Merle factorization theorem). (See [7],[8],[3] for the case

K = C) Suppose charxf = (b0, . . . , bh), b0 = ord f(0, y) = n > 1 and

n 6≡ 0 (mod char K). Then we have
∂f

∂y
= g1 · · · gh in K[[x, y]], where

1. i0(gi, x) =
n

ei
− n

ei−1
for 1 ≤ i ≤ h;

2. if φ ∈ K[[x, y]] is an irreducible factor of gi, then
i0(f, φ)

i0(φ, x)
=
ei−1bi
n

and i0(φ, x) ≡ 0 (mod n/ei−1).
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Proof. Since n 6≡ 0 (mod char K) we have i0

(
∂f

∂y
, x

)
= n − 1. Let

O = K[[x, y]]/(f) be the local ring of the branch {f = 0}; write O for

its integral closure and set C = O for its conductor.

It is well-known (see [5, Lemma 3.1]) that we have i0

(
f, ∂f∂y

)
=

dimK O/C + n− 1 and dimKO/C = c(f) (see [1, pp. 136-139]).

On the other hand, as the conductor satisfies c(f) =
∑h
k=1(nk −

1)bk−b0+1 (see [4, Corollary 3.5]), we obtain i0

(
f,
∂f

∂y

)
=

h∑
k=1

(nk−1)bk.

We apply Theorem 1.2 to the series f and g =
∂f

∂y
for λk = nk − 1 to

get the result.

The first result on factorization of the derivative was proved by

Henry J.S. Smith in [8]. Nevertheless his work fell into oblivion for a

long time. Merle proved the factorization theorem in the case where the

vertical axis is tranverse to the branch and Ephraim proved the theorem

in any coordinates [3]. The Granja theorem is a natural generalization

of the result due to Merle. That is the reason for the title of this note.

The Granja theorem was originally formulated in terms of Apéry

sequences and its proof employs Hamburger-Noether expansions (see [6]).

In [4] we developed a new approach to the theory of plane branches. We

used the logarithmic distance on the set of branches without resorting

to Hamburger-Noether expansions or a resolution process. Our proof of

the Granja factorization theorem follows the spirit of [4].

2 The contact coefficient

For any pair of branches {f = 0} and {g = 0} different from {x = 0} set

dx(f, g) =
i0(f, g)

i0(f, x)i0(g, x)
.

The function dx satisfies the strong triangle inequality (STI): for

any branches {f = 0}, {g = 0} and {h = 0} different from {x = 0} we
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get

dx(f, g) ≥ inf{dx(f, h), dx(g, h)},

that is, at least two of the numbers dx(f, g), dx(f, h), dx(g, h) are equal

among them and the third is not smaller than the equal two (see [4,

Section 2, Theorem 2.8]).

Let {f = 0} and {g = 0} be two branches. Then we write

hx(f, g) =
i0(f, g)

i0(g, x)

and call the number hx(f, g) the contact coefficient of the branches

{f = 0} and {g = 0}. For fk−1 a (k − 1)-th key polynomial of f with

charxf = (b0, . . . , bh) we have

hx(f, fk−1) =
ek−1bk
n

.

Proposition 2.1. With the assumptions and notations introduced above

for the contact coefficient, we have the following possibilities.

(a) If hx(f, φ) >
ek−1bk
n

then i0(φ, x) ≡ 0 (mod n/ek).

(b) If hx(f, φ) <
ek−1bk
n

then i0(f, φ) ∈ Nb0 + · · ·+ Nbk−1.

(c) If hx(f, φ) =
ek−1bk
n

then i0(φ, x) ≡ 0 (mod n/ek−1) and i0(f, φ) ≡ 0(
mod bk

)
.

Proof. For a) see [4, Lemma 5.6]. By assumption we have hx(f, φ) <

hx(f, fk−1), and this lead us to dx(f, φ) < dx(f, fk−1). Using the STI

with the power series φ, fk−1 and f we get dx(f, φ) = dx(fk−1, φ), which

implies i0(f, φ) =
i0(f, x)

i0(fk−1, x)
i0(fk−1, φ) = ek−1i0(fk−1, φ) ∈ Nb0 + · · ·+

Nbk−1 since charxfk−1 =

(
b0
ek−1

, . . . ,
bk−1

ek−1

)
(see [4, Proposition 4.2]).

This proves b). For c), first we check i0(φ, x) ≡ 0 (mod n/ek−1). If
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k = 1 then it is obvious, so assume k > 1. We have
i0(f, φ)

i0(φ, x)
=
ek−1bk
n

>

ek−2bk−1

n
, and hence i0(φ, x) ≡ 0 (mod n/ek−1) by the first statement of

this same proposition. All these facts yield i0(f, φ) =
ek−1bk
n

i0(φ, x) ≡ 0

(mod bk).

3 Proof of Theorem 1.2

Fix k and choose g ∈ K[[x, y]] so that the assumptions of Theorem 1.2

hold. Let g = φ1 · · ·φs with irreducible φj ∈ K[[x, y]]. First we check

i0(f, φ)

i0(φ, x)
≤ ek−1bk

n
(3.1)

if φ is an irreducible factor of g. Indeed, if not, we have an irreducible

factor φ of g such that
i0(f, φ)

i0(φ, x)
>
ek−1bk
n

. Proposition 2.1 lead us then

to i0(φ, x) ≡ 0 (mod
n

ek
), a contradiction since i0(φ, x) ≤ i0(g, x) <

n

ek
.

Now if λk 6= 0, then there exists at least one irreducible factor φ of

g such that
i0(f, φ)

i0(φ, x)
=

ek−1bk
n

. If we have
i0(f, φ)

i0(φ, x)
6= ek−1bk

n
for all

irreducible factors of g, Equation 3.1 take us to
i0(f, φj)

i0(φj , x)
<
ek−1bk
n

for

1 ≤ j ≤ s. In use of Proposition 2.1 we have i0(f, φj) ∈ Nb0+· · ·+Nbk−1

and consequently i0(f, g) =
∑s
j=1 i0(f, φj) ∈ Nb0 + · · ·+ Nbk−1. This is

impossible because of i0(f, g) =
∑k
i=1 λibi 6≡ 0 (mod ek−1) (if we have∑k

i=1 λibi ≡ 0 (mod ek−1), then we would get λkbk ≡ 0 (mod ek−1) and

λk
bk
ek
≡ 0 (mod nk−1), which is impossible since 0 < λk < nk).

Now, we prove Theorem 1.2 by induction on k > 0. If λk = 0, then

the theorem reduces to the case k− 1. Therefore we assume λk 6= 0. Let

gk be the product of all factors φj of g satisfying
i0(f, φj)

i0(φj , x)
=
ek−1bk
n

.
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Therefore we have
i0(f, gk)

i0(gk, x)
=

ek−1bk
n

and g = g̃gk in K[[x, y]]. By

Proposition 2.1 (b) we obtain i0(f, g̃) ∈ Nb0 + · · ·+Nbk−1. Similarly, by

Proposition 2.1 (c), we get i0(f, gk) ≡ 0 (mod bk) since we have i0(f, φ) ≡

0 (mod bk) for any irreducible factor φ of gk. From
i0(f, gk)

i0(gk, x)
=
ek−1bk
n

we get

i0(f, gk) =
ek−1bk
n

i0(gk, x) ≤ ek−1bk
n

i0(g, x) <
ek−1bk
n

n

ek
= nkbk.

With i0(f, gk) = akbk, we have ak < nk. Any element of the semigroup

Nb0+· · ·+Nbk−1 has a representation a0b0+· · ·+ak−1bk−1, where a0 ≥ 0

and 0 ≤ ai < ni. Therefore we have i0(f, g) = i0(f, g̃) + i0(f, gk) =

a0b0 + a1b1 + · · · + ak−1bk−1 + akbk, where 0 ≤ ai < ni for 1 ≤ i ≤ k

and a0 ≥ 0. On the other hand, by assumption we have i0(f, g) =

λ1b1 + · · · + λkbk. The unicity of the representation of i0(f, g) implies

a0 = 0 and ai = λi. In particular ak = λk and i0(f, gk) = λkbk hold.

Since
i0(f, gk)

i0(gk, x)
=

ek−1bk
n

we have i0(gk, x) =
n

ek
λk. If k = 1 we are

done (in that case we conclude i0(f, g̃) = 0, so g̃ is a unit and we work

with g̃g1 instead of g1). If k > 1 then g̃ =
g

gk
satisfies the assumptions

of Theorem 1.2 with k − 1. By induction we are done. �
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Resumen

En [6] Granja provó una generalización del teorema de Merle [7] para

curvas polares de ramas planas. El trabajo presenta una prueba de este

resultado sin recurrir a la expansión de Hamburger-Noether o secuencias

de Apéry (presentes en la prueba original), sino basándonos en el método

desarrollado en [4].
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Evelia R. Garćıa Barroso, Arkadiusz P loski
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