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LECTURES ON POLYNOMIAL EQUATIONS:
MAX NOETHER’S FUNDAMENTAL THEOREM,
THE JACOBI FORMULA
AND BEZOUT’S THEOREM

ARKADIUSZ PLOSKI

In memory of Jacek Chadzyriski

STRESZCZENIE. Using some commutative algebra we prove Max Noether’s
Theorem, the Jacobi Formula and Bézout’s Theorem for systems of poly-
nomial equations defining transversal hypersurfaces without common points
at infinity.

The classical theorems on polynomial equations: Max Noether’s Fundamental
Theorem, The Jacobi Formula and Bézout’s Theorem were presented in nineteenth-
century literature (see for example [La] and [Ne]) for polynomial equations with
indeterminate coefficients. In this article we give the present-day version of these
theorems. To prove Max Noether’s Fundamental Theorem which is basic for our
approach we use Hilbert’s Nullstellensatz and the Cohen-Macauley property of
parameters. An elementary proof of the Cohen-Macauley property is given in [P1].

1. INTRODUCTION

Let K be an algebraically closed field (of arbitrary characteristic). For any poly-
nomial P = P(X) € K[X] in n variables X = (X3,..., X,,) we denote by deg P the
total degree of P and by P the principal part of P, i.e. the sum of all monomials
of degree deg P appearing in P. By convention deg0 = —oo, 07 = 0.
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Definition 1. Let F; € K[X], 1 < i < n be nonconstant polynomials in n variables
X = (Xy,...,X,). The system of polynomial equations F1(X)=---=F,(X)=0
is general if the following conditions hold

(1) the system of polynomial equations F1(X) = --- = F,(X) = 0 has no
solutions at infinity i.e. the system of homogeneous equations F;" (X) =
o= FY(X) =0 has in K" only the zero-solution X = 0;

(2) all solutions in K" of the system F1(X) =--- = F,(X) = 0 are simple i.e.
OF;
the jacobian det <8X > does not vanish on the solutions of this system.
J

Let us consider some examples:

(1) The system of linear equations a;1 X1 + -+ 4+ a;n X, —b; =0, 1 <i< nis
general if and only if det(a;;) # 0.

(2) If F; = Xidi + cilXZ.di*l + 4 ca, € K[X;], 1 < i< n, are one-variable
polynomials of degree d; > 0 with simple roots then the system F;(X;) =
- = F,(X,) = 0 is general.

(3) Let s;(X), 1 < i < n be symmetric polynomials defined by identity

(T—X1) (T —Xp)=T" +s1(X)T" 4+ 5,(X)

ie.
$1(X) = —(X1 4+ Xn), ) sa(X) = (=1)"X; - Xy,
Let D(s1,...,8,) be the discriminant of the polynomial 7" + s1T™ 7 +
-+ + s, with general coefficients s1,...,s,. Recall that
; X 2 n
D(s1(X),...,5n(X)) = (det (a;)((j >>> = II @@=’

i=1,i>j
(see pages 150-151 of [Pe]).
It is easy to see that the system of polynomial equations s1(X) —
ap = - = $(X) — a, = 0, where a; € K, is general if and only if
D(ay,...,a,) #0 .

Fi(X
In the sequel we put F' = (Fy,...,F,) € K[X]", JacF = det 68)(( ) and
J
V(F) ={z = (21,...,2,) € K" : Fi(x) = --- = F,(x) = 0}. The system of
polynomial equations F1(X) =--- = F,(X) = 0 will be denoted F = 0.

Now we may formulate the three classical theorems mentioned in the title of
these lectures.

Theorem 1 (Max Noether’s Fundamental Theorem). Let F = 0 be a general
system of polynomial equations. If a polynomial G vanishes on the set V(F') then
there exists polynomials Ay, ..., A, € K[X] such that

G= ZAiFi and deg A;F; < degG forie{l,...,n}.
i=1
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We will give the proof of Theorem 1 in Section 3 of these notes. Note that
with the notations of Theorem 1 we have deg G = m%lx(deg A;F;) since the inequ-
=
ality deg G < mfaf(deg A;F;) is obvious. The following property is an immediate
consequence of Max Noether’s Theorem.
Corollary 1. The solutions of the general system of polynomial equations F1(X) =
- = F,(X) = 0 do not lie on a hypersurface of degree strictly less than
mi{l(degFi). Moreover the system F1(X) = -+ = F,(X) = 0 has at least one
i—

solution m K™.

Proof. If the solutions of the system Fy(X) = --- = F,(X) = 0 lie on the
hypersurface G(X) = 0 then degG = m%lx(degAiFi) > mi?(deg F;). This pro-
1= 1=

ves the first assertion. To check the second assertion suppose that the system
Fi(X) = --- = F,(X) = 0 has no solutions in K". Taking G = 1 we get

deg G > m_ n(deg F;) > 0 by the first part of the corollary. Contradiction.

Using Max Noether’s Fundamental Theorem we prove in Section 4

Theorem 2 (The Jacobi Formula). Let F =0 be a general system of polynomial
equations. Then the set V.=V (F) is finite and for every polynomial H € K[X] of

degree deg H < Z(deg F; — 1) one has
i=1

Note that if n = 1 then the Jacobi Formula follows easily from the Lagrange
Interpolation Theorem: let F'(X) = (X —z1)--- (X — z4) € K[X] be a univariate
polynomial of degree d > 1 such that z; # x; for i # j. Then

_ i H(z;)
~ F'(x

provided that H(X) is a polynomial of degree strictly less than d.

—

X—x) (X =) (X —xq)

The assumption on the degree of H cannot be weakened. If char K = 0 then

—JacFlsofdegreeZdegF—l and Z J#:ﬂV( F)#0.
i=1 zeV(F) ac ( )



150 A. PLOSKI

Corollary 2 (The Cayley-Bacharach Theorem). If a polynomial H of degree stric-

n

tly less than Z(deg F; — 1) vanishes on all points of V.= V(F) but one then it
i=1
necessarily vanishes on V.

The oldest result on general systems of polynomial equations is due to Etienne
Bézout (Théorie générale des équations algébriques, Paris, 1770).

Theorem 3 (Bézout’s Theorem). Let F' = 0 be a general system of polynomial

n
equations. Then it has exactly Hdeg F; solutions.
i=1

We give the proof of Theorem 3 in Section 3. To prove Béout’s Theorem we will
use Max Noether’s Fundamental Theorem and the Poincaré series (see Section 5).

2. HOMOGENEOUS SYSTEMS OF PARAMETERS

Let ¢ = (¢1,...,dn) be a sequence of homogeneous polynomials ¢; € K[X],
X =(Xy,...,X,). Using Hilbert’s Nullstellensatz we check

Lemma 1. Let K be an algebraically closed field. Then the following conditions
are equivalent:

(1) the system of homogeneous equations ¢1(X) =-+- = ¢, (X) =0 has in K"
only the zero-solution X = 0.
(2) there is an integer N > 0 such that all monomials X' --- X", ag +

<+« 4+ an = N belong to the ideal I(¢) = (P1,...,0,)K[X] generated by
¢17"'7¢n in K[X]

Now let K be an arbitrary field.

Definition 2. The sequence of homogeneous forms ¢ = (¢1,...,¢,) € K[X]" is a
homogeneous system of parameters (h.s.o0.p.) if the ideal generated by ¢1,. .., oy, in
K[X] contains all monomials of sufficiently high degree i.e. if it satisfies the second
condition of the above lemma.

The following result on h.s.o.p. is basic for us. For the proof see [St] (page 37,
The Cohen-Macauley property).

Theorem 4. If ¢ = (¢1,...,¢n) € K[X]|" is a h.s.o.p. then for every k, 0 < k <n
and for every homogeneous polynomial ¢ such that Yopi1 € (f1,- .., ¢r)K[X] we
have 11[} € (¢17 B a¢k)K[X]
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3. PROOF OF MAX NOETHER'S FUNDAMENTAL THEOREM

Let Fy,...,F, € K[X] be polynomials (we do not assume that the system

Fi(X) = - = Fo(X) = 0 is general!) in n variables X = (Xy,...,X,) with
coefficients in an algebraically closed field K. Let G € K[X]. We say that the
sequence G, Fi, ..., F, satisfies Noether’s conditions at x € K™ if there exists

a polynomial D, = D,(X) € K[X] such that D,(x) # 0 and D,G is in the ideal
(Fy,..., F)K[X].

Lemma 2. Let G, Fy,...,F, € K[X] be polynomials such that for every x €
K" the sequence G,Fi,...,F, satisfies Noether’s conditions at x. Then G €
(Fy,...,F)K[X].

Proof. The system of polynomial equations D,(X) = 0, 2 € K™ has no solutions

in K". Therefore by Hilbert’s Nullstellensatz there exists a family of polynomials

M,(X), z € K™ such that f{w € K™ : M,(X) # 0} <+ooand »  M,D,=1in
weKW

K[X]. Then we get G = ( > M1D$> > M.(D.G) € (Fy,...,F,)K[X].
ze K" zeEK™
Remark 1. If x ¢ V(Fy,...,F,) then for any polynomial G the sequence
G, Fy,..., F, satisfies Noether’s conditions at x. It suffices to take D, = F; where
F; is such that F;(x) # 0.
Lemma 3. Let Iy, ..., F, € K[X] be polynomials such that Fy(z) = --- = F,(x) =
OF;
0 and det (8X (x )> # 0 at a point © = (z1,...,z,) € K". Then there is a
polynomial D, (X) € K[X]| such that (X; — z;)Dy € (Fy,...,F,)K[X] for i €
{1,...,n} and D,(z) # 0.

Proof. Write F;(X) = (X1 — 21)Di1(X) + -+ + (X, — ) Din(X) in K[X] for

F;
X, (). Let
D, (X) := det(D;;(X)). Then D,(z) # 0 and by Cramer’s Rule (X; — xl)Dm(X) €

(Fy,...,F,)K[X].
Proposition 1. Let Fy,..., F, € K[X] be polynomials such that for every x €

OF;
V(F1,...,F,) one has det X, (x )) # 0. Let G € K[X] be a polynomial such
that G(z) = 0 for all x € V(Fl,...,Fn). Then G € (Fy,..., F,)K[X].

i € {1,...,n}. Differentiating and putting X = z we get D;;(z) =

n

Proof. Let x = (z1,...,2,) € K". If z € V(F},...,F,) then G(X) = Z(X’ -

i=1
x;)Gi(X). By Lemma 3 there is a polynomial D,(X) € K[X] such that (X; —
x;)Dy(X) € (F1,...,F,)K[X]. Thus DG € (Fy,..., F,)K[X]. By Lemma 2 and

Remark 1 we get G € (F1,..., F,)K[X].

What remains to be proved in Noether’s Theorem is the bound on the degrees.
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Proposition 2. Let Fy,...,F, € [X] be nonconstant polynomials such that the
homogeneous forms F;™ € K[ l, i € {1,...,n}, form a h.s.o.p. Then for every
n

G € (Fy,...,F,)K[X] there exists Ay, ..., A, € K[X] such that G = ZAZ-FZ- and
i=1
deg(A; F;) < deg(G) forie{1,...,n}.

Proof. Let Xy be a new variable and let é(XO,X), ]:}(XO,X), ie{1,...,n},

be the homogenization of G(X) and F;(X) for ¢ € {1,...,n}. Recall that

~ X X, ~

G(Xo, X) = X55°q <X1 X > Since G € (FY,...,F,)K[X] we get X)YG €
0

(F1,...,F,)K|[Xy, X] for an integer N > 0. It is easy to see that Xév,ﬁl, .. E,

form a h.s.o.p. in K[Xg, X]. By Theorem 4 X} is not a zero-divisor mod

(Fl,...,Fn) and we may write G = Zz/}iﬁi where v; are homogeneous poly-
i=1
nomials such that 1; F; is either 0 or of degree degé Let A;(X) = ¥i(1, X) for

i € {1,...,n}. Putting X, = 1 in the identity G = ZQ/JZF we get G = ZA i Fy

=1 =1

and deg(A;F;) < degG for i € {1,...,n}.

Remark 2. With the assumptions of Proposition 2 one has m%lx(deg AF;) =
=

degG and Gt = ZA;FF;F where I = {i : deg(A;F;) = deg(G)}. In particular
i€l
Gt e (F,...,F).

Proof of Max Noether’s Fundamental Theorem. Max Noether’s Theorem
follows immediately from Proposition 1 and Proposition 2.

4. PROOF OF THE JACOBI FORMULA

Lemma 4. Let F = (Fy,...,F,) € K[X]" be polynomials with coefficients in
a field K. Then the set W = {x € K" : F(z) = 0 and Jac F'(x) # 0} is finite.

Proof. By Lemma 3 for every « € W there is a polynomial D, = D,(X) such that
D,(z) # 0 and
(X; —x;)Dy € (Fy,...,F,) fori=1,...,n.

Let us put U, = {& € K" : D,(&) # 0} for every & € W. Then U, C K" is
a Zariski open subset of K" and W N U, = {z}. Since K[X] is a noetherian ring

there exists a finite sequence 1, ..., x5 € W such that U U, = U U,,. Obviously
zeW =1
W = {$1, cee ,333}.
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Now, let F = (F1,...,F,) € K[X]" be a sequence of polynomials such that the
set V = V(F) is finite. If R, S € K[X] and S(z) # 0 for all x E V then we define

R
the trace of g with respect to F' by putting Tr g ( >

S

If the system of polynomlal equations F' = 0 has only simple solutions then

Lemma 5. Let F = (Fy,...,F,) € K[X]|" and G = (Gy,...,G,) € K[X]|"
be such that the systems of polynomml equations F' = 0 and G = 0 have only

simple zeroes. Suppose that G; = ZAiij in K[X]. Let A = det(A;;). Then

=1
H AH
r (JacF) =Tre (JacG)'

Proof. Differentiating the identities

(1) Gi=)_ AyF;
j=1
we get
(2) JacG = A Jac F (mod (Fy, ..., F,)K[X]).

From (1) and (2) we get that for all x € K™, F(x) =0 if and only if G(z) = 0 and
A(z) # 0. Indeed, if F(z) = 0 then G(z) = 0 by (1) and Jac G(x) = A(z)Jac F(zx)
by (2). Thus Jac G(z) # 0 by the hypothesis that all the zeroes of the system G = 0
are simple, consequently we get A(x) # 0.

On the other hand suppose that G(x) = 0 and A(x) # 0. Then from (1) we get
0= ZA’J ) for i € {1,...,n} and F;(z) = 0 by Cramer’s Rule. Summing

up we have V(F)=V(G)\V(A) and Jac G = AJac F' on V(F)).

Now, we get

A(z)H (z) A(z)H (z) AH
-y AW e AW g |
Jac G(x) Jac G(x) Jac G
TEV(G)\V (A) 2EV(G)
Lemma 6. If G = (G1,...,G,) € K[X]|" where G; = Gi(X;) € K[Xi],
ie{l,...,n}, are nonconstcmt polynomials with simple zeroes then for every poly-

H
nomial H € K[X], degH<Z deg G; — 1) one has Tr ¢ (J G)
i=1
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Proof. By linearity of the trace we may assume that H = X" --- X2, It is easy
t that T — | =T —fl T n If deg H = ; <
o see that Ir r - Ir . e a;

S\ Jaclr G1 o Gn G g ; -

Z(degGi—l) then a; < deg G; —1 for some i € {1,...,n} and Tr¢, < C;’- ) =0.
i=1 7

Consequently Tr ¢ < ) = 0 and we are done.

H
JacG
Proof of the Jacobi Formula. Let F = 0 be a general system of polynomial
equations. Then the set V' = V(F') is finite by Lemma 4 (and non-empty by Corol-
lary 1). Let II; : K™ — K be the projection given by II;(z;, ..., z,) = z; and put
Gi(X;) = H (X; — ;) € K[X;] where V; =II;(V(F)). Then G;(X;) is a polyno-

z, €V;
mial with simple zeroes vanishing on V. By Max Noether’s Fundamental Theorem
we may write G; = A Fy + -+ + A F,, € K[X] with deg(A4;,;F;) < degG; for
i € {1,...,n}. Let A = det(A;;). For any permutation (ji,...,jn) of (1,...,n)
we get deg(£A1j, - Anj,) < (degGr — degFj,) + -+ + (deg G, — deg F},,) =

Z(deg G; — deg F;) and consequently deg A < Z(deg G; — deg F;).

i=1 i=1

Let H € K[X] be a polynomial such that deg H < Z(deg F; — 1). Therefore

i=1
deg(AH) < Z(degGi —deg F;) + Z(degFi —-1) = Z(degGi —1). Let G =
i=1 i=1 i=1
H AH
(G1,...,Gy). By Lemma 5 and Lemma 6 we get Tr p (JacF) =Trg (JacG) =

0.

5. POINCARE SERIES

Let K be an arbitrary field (not necessarily algebraically closed).

Let ¢1,...,¢n € K[X], X = (X1,...,X,) be a sequence of homogeneous forms
of degrees di,...,d, > 0. For any integer d > 0 we denote by K[X], the linear
K-linear subspace of K[X] generated by monomials X' -+ X a3+ -+, = d.
For any integer m, 1 < m < n we put (¢1, ..., ¢m)q the K-linear subspace of K[X]4
consisted of the sums a3 ¢1 + - - - + @ P, Where «; are homogeneous polynomials
such that a;¢; is either 0 or of degree d. We put, by convention, (¢1, ..., dm)d = (0)4
if m = 0.

Theorem 5. Suppose that ¢1, ..., ¢, is a sequence of homogeneous parameters in

K[X]. Then for any integer m, 0 < m < n we have

> (dimg K[X]a/(¢1,- - dm)a) T =

d>0

H?;1(1 — Tdi)
(1-1)"
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Remark 3. The formal power series which appears on the left side of the above
identity is named the Poincaré series of the graded algebra K[X]|/(¢1,...,dm) =~

@K[X]d/(¢1,~--,¢m)d-

d>0

To prove Theorem 5 we need two lemmas.

1

Lemma 7. ) (dimgx K[X]q) T¢ = T

d=0

Proof. Let T1,...,T, be new variables. Then

ZTlal ZTgn - Z T ... Ton,

a1 >0 @, =0 (1. y0 )ENT
Let T be a variable. Substituting 71 = --- =1, =T we get
Z T — Z Tort o
a>0 (o1,y...,00 ) ENT
“S( X )re St
d>0 \ai1++a,=d d>0
and the Lemma follows since Z T = T in Z[T].

a0
Lemma 8.
(1) dimKK[X}d/((ﬁl,...,d)m)d :dimKK[X]d/(¢1,...,¢m_1 q for d<dy,.

)
(2) dimg K[X]a/(¢1,- - m)a = dimp K[X]a/(d1,. . dm—1)a —
—dimg K[X]4-a,,/(¢1,- -, dm—-1)a—a,, for d>dy.

Proof. Property 1. is obvious since (¢1,...,0m)d = (¢1,...,Pm—1)a for d < dp,.
Let U be a K-linear space of finite dimension. Then for any subspaces W,V C U
such that W C V we have dimg U/W = dimg U/V + dimg V/W. Taking U =
K[X]d, V= (¢1, ey ¢m)d and V = ((/)1, ey (bmfl)d we get

(3) dimKK[X]d/(¢1;-~-a¢m—1)d = dlmKK[X]d/(¢177¢m)d
+ dimg(¢1,-- 5 Om)a/ (P15 Prm—1)a-

By Theorem 4 ¢, is not a zero-divisor mod (¢1, ..., ¢m—1). Consequently the
mapping A — A¢,, where A € K[X]4_q,, induces an isomorphism of spaces
(D1, bm)a/ (P15 s dm—1)a and K[X]i—a,, /(¢1,-- -, Pm—-1)d—d,, and we get

(4) dimg (¢1,---, ¢m)a/ (D1, s Om—1)a = dimg K[X]g—a,, / (&1, ..., dm—1)d—d,, -
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From (3) and (4) we obtain Property 2. of Lemma.
Now we can give

Proof of Theorem 5.

If m = 0 then the formula follows from Lemma 7. Suppose that m > 0 and that
Theorem 5 holds for m — 1. So we have

—_Tdiy. .. (1 — Tdm—1
Z(dlm[{ K[X]d/(¢17...7¢m,1)d)Td: (1 a 21_(7{)n a )

d>0

Using Lemma 8 we get

3 (dimg K[X]a/ (1, $m)a) T =

d=0
—Z (dimg K[X]a/(¢1,-- -, pm—1)a) T* —
d=0
— Y (dimg K[X]a-a,./(1,- -, bm—1)a—a,) T* =
d>d,,
=Tty (=Tl (=T (=T
1-1r (1-1)"
=Ty (1= T%)
-1y
Corollary 3. If ¢1,...,¢n is a system of homogeneous parameters in K[X| with
deg (]51 = di, then
dlmKK[X]/(¢1,,¢n) = d1 "'dn.
Proof. If m = n then by Theorem 5 we get
> (dimg (K[X]a/ (61, dn)a) T =
d>0
(5) =(14TH+- 4T A4+T+- -+ T,

Therefore dimg (K[X]q/(é1,---,¢n)a) = 0 for d > Z(di — 1). Substituting
i=1
T =11n (5) we get

3 dimg K[X]a/ (1, dn)a = di -+~ d.

d=>0

It suffices to observe that K[X]/(¢1,...,¢n) and Sg=0K[X]a/(¢1, ..., dn)a are
K-isomorphic.
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Let dy,...,d, > 0 be a sequence of positive integers. For any d > 0 we put
(6) va(dy,...,dy) :ﬁ{(al,...,an): 0<qa;<djfori=1,...,n, Zai:d} )

Lemma 9. To abbreviate the notation we put vg = vy(dy, ..., dy).

() Q+T+...T" . (A+T+...T" )= ",

d=>0
(i) Y va=di...dy,

d>0
n

(iii) Let 6 = Z(dz —1). Then vg = v5_q for 0 < d < 6.
i=1

Proof. Property (i) is obvious. Putting 7' = 1 we get (ii). The polynomial on the
left side of (i) is recurrent, hence it follows (iii).

Proposition 3. dimg K[X]a/(¢1,...,0n)a = valdy,...,dy).

Proof. Use formula (5) and Lemma 9 (i) .

6. MONOMIAL BASES

We keep the notation and assumptions of Section 5. In particular, K is an
arbitrary field. Let A = K[X]/I be an affine algebra of finite dimension D =
dimg A. A monomial basis of A mod. the ideal I is a sequence of monomials
€0,...,ep—1 € K[X] such that the images of eg,...,ep_1 in A form a linear basis
of A.

Proposition 4. Let Fy,...,F, € K[X] be nonconstant polynomials such that
the homogeneous forms F; ... Ff form h.s.o.p. Let I(F) = (Fy,...,F,) and
I(FY) = (F,...,E). Then any monomial basis mod I(F™) is a monomial basis
mod I(F).

Proof. Let €, €1, ...,ep_1 be a monomial basis. We will check that ey, €1,...,ep_1

is a linear basis mod I(F). First, let us prove that €g,e€1,...,ep_1 are linearly

independent mod I(F). Suppose that there is a non-zero sequence ¢y, ...,cp—1 €

K such that cpeg + -+ + ¢p_1ep—1 = 0 mod I(F). Let I = {i : ¢; # 0} and

Iy={iel: deg(z cj€e;) = dege; }. Then, by Remark 2 we get Z cie; =0 (mod
J i€l

I(F™)) which contradicts the linear independence of ¢; mod I(F™).

To check that every polynomial G is a linear combination of ¢; mod I(F') we use
induction on degG. Let N > 0 be an integer and suppose that every polynomial
of degree strictly less than N is a linear combination of €; mod I(F'). Let G be
a polynomial of degree N. It suffices to check that G is a linear combination of
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€0,...,€p_1 mod I(F). Since €, ...,ep_; form a linear basis mod I(F*) we may
write

G* :¢1F1++"'+¢nF7JLr+ZCi€i

where ¢; are homogeneous forms such that ¢;F;" is of degree deg Gt = N. Write
F = Fi+ + R;, 1 < ¢ < n, where deg R; < deg Fi’L. Then we get

Gt =¢1(Fy —Ry) + -+ ¢n(Fn — Ry) + ZCiEi =
= ¢1(—R1) + -+ ¢n(—Rn) + > _ cie; mod I(F)
where deg(—¢p1 Ry — -+ — ¢, R,) < N and we are done.

Theorem 6. If Fy,..., F, are nonconstant polynomials, dy = deg Fy,...,d, =
deg F), such that the forms i, ... F. form a homogeneous system of parameters
then

dimg K[X]/I(F) =dy...d, .

Proof. Proposition (4) implies that dimx K[X]/I(F) = dimg K[X]/I(FT). Use
Corollary 3.

Theorem 7. With the assumptions of Theorem 6 there exists a monomial basis
mod the ideal I(F') such that

#{i: dege; = d} = va(dy, ..., dy)

foranyd >0

Proof. According to Proposition 4 it suffices to prove the theorem for ideal I(F™).
Let €, €1,...,ep_1 be a monomial basis mod I(F™). Fix an integer d > 0. Sin-

ce K[X]/I( FJr @K la/I(FT)4 the images of €g,e€1,...,ep_1 of degree d

form a basis of the space K[X]q/I(F1); which is of dimension v4(dy,...,d,) by
Proposition 3.

7. PROOF OF BEzoUT’S THEOREM

We keep the notations of Introduction. We consider a general system of po-
lynomial equations F' = 0 and its set of solutions V' (F'). We know that V(F') is
non-empty (see Corollary 1) and finite (see Lemma 4). Let us denote I(F') the ideal
generated by polynomials Fy, ..., F, in the ring K[X]. To prove Bézout’s Theorem
we need
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Lemma 10.
fV(F) = dimg K[X]/I(F).

Proof. Let us consider the K-algebra K[V] of polynomial functions on the set
V = C(F). It is easy to see that the family {e, : = € V} where e;(x) = 1 and
ex(z") = 0 for 2 € V \ {z} is a K-linear basis of K[V]. Thus dimg K[V] = §V.
On the other hand the K-linear homomorphism ¢ : K[X] — K[V] defined by
o(P) = Py, has by Proposition 1 the kernel I(V'). Thus K[V] and K[V]/I(F) are
isomorphic and the lemma follows.

Proof of Theorem 3. By Lemma 10 and Theorem 6 we have
§V (F) = dimg K[X]/I(F) = [ [ deg F:.
i=1

The reader will find more about Bézout’s Theorem in [LJ].

8. APPLICATION TO REAL ALGEBRAIC GEOMETRY

Let F = (F},...,F,) € R[X]" be nonconstant polynomials in n variables X =
(X1,...,Xp) of degrees dy,...,d, > 0. Suppose that the system of polynomial
equations F' = 0 is general (see Definition 1). Let V = V(F) be the set of all
complex solutions of F' = 0 and let Vg = V(F) NR". Let Jp = Jac F'. We define

indF = Z sgn Jp(a) (the index of vector field F'). We define the Petrovskii
acVr
number II(dy, ..., d,) by the formula

IN
£
A
&
|'M
8
I
|
(7
&
|
=

H(dh-u,dn)Zﬁ{(oq,...,an):O 4 4 . ; , }

Clearly, if Z(d’ — 1) is an odd number then II(dy,...,d,) = 0. Note also that

i=1
H(dl,dg) = min{dl,dg} ifdi+da=0 (mod 2)

The following theorem may be considered as a real counterpart of Bézout’s
theorem.

Theorem 8 (Petrovskii-Oleinik Inequality). With the notation and assumptions
introduced above
lind F| < (dy,...,d,).

The inequality figuring in Theorem 8 was proved by Arnold [A] and called by
him the Petrovskii-Oleinik inequality. Khovanskii [Kh] proved an inequality of this
type for the index of polynomial vector field in the open set defined by an equation
P >0.
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Proof of the Petrovskii-Oleinik inequality.
1. Preliminaries

Let V' C C" be a finite subset of C™ such that if a = (a1,...,a,) € V then
a = (a1,...,a,) € V. Let R[V] be the set of all functions f : V' — C such that
f(a) = f(a) for a € V. Then R[V] is an algebra over R, dimg R[V] = V. Let
¢ € R[V] be a fixed function which is nowhere 0. We consider the bilinear form B,
on R[V] defined by

By(f,9) =Y d(a)f(a)g(a).

acV

Lemma 11. The quadratic form Qu(f) = By(f, f) takes real values and is non-
degenerate. The signature 0(Qgy) of Qg is equal to

Z sgn ¢(a).

acVNR

Proof of Lemma 11. Let V = {a1,...,am,b1,... b5, b1,...,bs} where @; = a; for
i=1,...,7,b; #bj for j =1,...,s are pairwise different. We have

Qu(f) =3 0(ai)f(a)? +23_Re{o(b;)f(b;)}-

Let Qi(f) = #(a;)f(a;)* (i = 1,...,7) and R;(f) = o(b;)f(b;)* (j = 1,...,5s).
Then rank @; = 1, 0(Q;) = sgn¢(a;), rankR; = 2, o(R;) = 0. The subspaces
corresponding to linear forms f — f(a;) and f — f(b;) are orthogonal with respect
to the form Bg. Therefore

rank Qg = rank Q1 + - -- +rank @, + rank Ry + - -- + rank R,
=71+ 2s =V = dimg R[V]

and
0(Qy) =0(Q1) +--+0(Qr) +o(Ra) + - +0(Rs) = Z sgn ¢(a;).

Lemma 12. Let N be any linear subspace of R[V| on which Q4 is identically equal
to zero. Then 0(Qy) < dimg R[V] — 2dimg N.

Proof. The lemma follows from Witt’s theorem (see [L]), p. 592, Corollary 10.4).
Let V' be the set of all complex solutions of the general system of real equ-

ations Fy = 0,...,F,, = 0 of degrees dy,...,d, > 0. Note that dimg R[V] = §V =
dimc C[V] = d; - - - d,, by Bézout’s theorem. For any polynomial H € R[Xj, ..., X,]
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we define a function [H]| of R[V] by putting [H](a) = H(a) for a € V. Let us con-
sider the subspace of R[V]:

N = {[H] eER[V]:degH < ;zn:(di—l)}.

i=1

If [H] € N then deg H? < Z(dz — 1) and by the Jacobi formula

7 H(a)*
Z JacF(a) 0

1
Let ¢ = ——. Then the subspace N is contained in the cone Q;l(O). By Lemma

Jac F'
12 we get
ind F| = | Y sgnJac F(a)| = [0(Qy)| < dimg R[V] — 2dimg N
acV
<dy---d, —2dimg N.
By Theorem 7 there exists a monomial basis e, ..., e, of R[V] such that

#{i: dege; =d} = vq(dy,...,d,) ford=0.

Let 6 =) (d; —1). Then

i=1

1
dimg N = number of elements in monomial basis of degree < 55

1
= number of elements in monomial basis of degree > 55

by Lemma 9 (iii).
Therefore
1
2dimg N = number of elements in monomial basis of degree #* 55
:dldn 7V%5(d1,...,dn)

and

lind F| = |0(Qy)| < dimz R[V] — 2dimg N = v,(dy. ..., dy) = TI(dy, ..., dy).
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