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Abstract. This article, based on the talk given by one of the authors at the Pierrettefest
in Castro Urdiales in June 2008, is an overview of a number of recent results on the polar
invariants of plane curve singularities.

Introduction

The polar invariants (called also polar quotients) of isolated hypersurface
singularities were introduced by B. Teissier in 1975 to study equisingularity
problems (see [Te1975], [Te1977], [Te1980]). They are by definition, the
contact orders between a hypersurface and the branches of its generic polar
curve. To every polar invariant q of a given isolated hypersurface singularity
one associates in a natural way an integer mq > 0 called the multiplicity of q.
Teissier’s collection {(q,mq)} is an analytic invariant of the singularity. Even
more: it is an invariant of the “c-cosécance” which is equivalent in the case of
plane curve singularities to the constancy of the local embedded topological
type (see [Te1977]). The Milnor number, the Łojasiewicz exponent, the
C0-degree of sufficiency and other numerical invariants can be computed in
terms of Teissier’s collection.

It is well-known (see [Te1976], [BriKn1986], [Te1991]) that the constancy
of the local embedded topological type of plane curves is equivalent to the
usual definitions of equisingularity (see Preliminaries where the definition of
equisingularity in terms of intersection numbers is given).
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M. Merle [Mer1977] computed Teissier’s collection for a branch (irre-
ducible analytic curve) in terms of the semigroup of the branch. Much
earlier a computation of the contacts between an irreducible curve and the
branches of its generic polar curve was done by Henry J. S. Smith [Sm1875]
but his work fell into oblivion for long time. R. Ephraim [Eph1983] gener-
alized the Smith-Merle result computing the polar invariants in the case of
special polars and applied his result to the pencil of curves which appears
when studying affine curves with one branch at infinity (see Sections 4 and 7
of this article).

The case of multi-branched curves turned out much more complicated
and was studied by many authors: Eggers [Egg1982], Delgado [Del1994],
Casas-Alvero [Cas2000], García Barroso [Gar2000], C. T. C. Wall [Wall2003]
using algebraic methods and by Lê D. T., F. Michel and C. Weber
in [LêMiWe1989], [LêMiWe1991] using topological tools. Lê D. T. initiated
the topological approach to the polar invariants in [Lê1975].

C. T. C. Wall gave an account of most results obtained in the above
quoted papers in his book [Wall2004] dealing with different aspects of the
curve singularities.

The goal of this article is to give an overview of a number of recent results
on the polar invariants of plane curve singularities.

In Section 2 we present a refinement of Teissier’s invariance theorem in
the case of plane curve singularities. In Section 3 we give an approach to
the polar invariants based on Puiseux series developing the method due to
Kuo and Lu [KuoLu1977].

Section 4 is devoted to the Smith-Merle-Ephraim theorem in the one
branch case and to the irreducibility criterion obtained quite recently by
García Barroso and Gwoździewicz. (Theorem 4.5 and Corollary 4.6).

In Section 5 we present explicit formulae for the polar invariants in terms of
semigroup of branches and intersection multiplicities due to Gwoździewicz and
Płoski (Theorem 5.2). The geometric interpretation of these formulae in terms
of the Newton diagrams associated with many-branched singularity is new.

In Section 6 we recall a result obtained by Lenarcik and Płoski (Theo-
rem 6.1) which gives an effective formula for the jacobian Newton diagram
(see Section 2) of a nondegenerate (in the sense of Kouchnirenko) plane curve
singularity. Then, we present in Section 7, some applications of the polar
invariants to pencils of plane curve singularities.

1. Preliminaries

In this section we recall some useful notions and results that we need in
this article. The references for this part are [BriKn1986], [Cas2000], [Te1991],
[Wall2004].
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1.1. Basic notions

Let C{X,Y } be the ring of convergent complex power series in variables
X,Y . Let f ∈ C{X,Y } be a nonzero power series without constant term.
An analytic curve f = 0 is defined to be the ideal generated by f in C{X,Y }.
We say that f = 0 is irreducible (reduced) if f ∈ C{X,Y } is irreducible (f
has no multiple factors). The irreducible curves are also called branches. If
f = fm1

1 . . . fmr
r with non-associated irreducible factors fi then we refer to

fi = 0 as the branches or components of f = 0.

Recall here that for any nonzero power series f =
∑

cαβX
αY β we put

ord f = inf{α+ β : cαβ 6= 0} and in f =
∑

cαβX
αY β with summation over

(α, β) such that α + β = ord f . The initial form in f of f determines the
tangents to f = 0.

For any power series f, g ∈ C{X,Y } we define the intersection number
(f, g)0 by putting

(f, g)0 = dimCC{X,Y }/(f, g)

where (f, g) is the ideal of C{X,Y } generated by f and g. If f, g are nonzero
power series without constant term then (f, g)0 < +∞ if and only if the
curves f = 0 and g = 0 have no common branch.

Now suppose that f = 0 is a branch and consider

S(f) = {(f, g)0 : g ∈ C{X,Y } runs over all series such that

f does not divide g}.

Clearly 0 ∈ S(f) (take g = 1) and a, b ∈ S(f) ⇒ a + b ∈ S(f) since the
intersection number is additive. We call S(f) the semigroup of the branch
f = 0. Note that S(f) = N if and only if ord f = 1 (we say then that f = 0
is regular or nonsingular).

Consider two reduced curves f = 0 and g = 0. They are equisingular if
and only if there are factorizations f =

∏r
i=1 fi and g =

∏r
i=1 gi with the

same number r > 0 of irreducible factors fi and gi such that

• S(fi) = S(gi) for all i = 1, . . . , r,
• (fi, fj)0 = (gi, gj)0 for i, j = 1, . . . , r.

The bijection fi 7→ gi will be called equisingularity bijection. In particular
two branches are equisingular if and only if they have the same semigroup. A
function defined on the set of reduced curves is an invariant if it is constant
on equisingular curves. The multiplicity ord f , the number of branches r(f)
and the number of tangents t(f) of f = 0 are invariants.

For any analytic curve f = 0 we consider the Milnor number µ0(f) =
(∂f/∂X, ∂f/∂Y )0. One has µ0(f) < +∞ if and only if the curve f = 0 is
reduced. Let us recall the following two properties:
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• if f = 0 is a branch then µ0(f) is the smallest integer c ≥ 0 such that all
integers greater than or equal to c belong to S(f),

• if f = f1 . . . fr with pairwise different irreducible fi then

µ0(f) + r − 1 =
r

∑

i=1

µ0(fi) + 2
∑

1≤i<j≤r

(fi, fj)0.

Thus the Milnor number is an invariant. A simple proof of the above prop-
erties is given in [Pł1995].

1.2. Newton diagrams after [Te1976]

Let R+ = {x ∈ R : x ≥ 0}. The Newton diagrams are some convex
subsets of R2

+. Let E ⊂ N2 and let us denote by ∆(E) the convex hull of
the set E + R2

+. The subset ∆ of R2
+ is a Newton diagram (or polygon) if

there is a set E ⊂ N2 such that ∆ = ∆(E). The smallest set E0 ⊂ N2 such
that ∆ = ∆(E0) is called the set of vertices of the Newton diagram ∆. It is
always finite and we can write E0 = {v0, v1, . . . , vm} where vi = (αi, βi) and
αi−1 < αi, βi−1 > βi for all i = 1, . . . ,m. In particular the Newton diagram
∆ with one vertex v = (α, β) is the quadrant (α, β) + R2

+.

According to Teissier for k, l > 0 we denote by { k
l } the Newton diagram

with vertices (0, l) and (k, 0). We put also { k
∞} = (k, 0) + R2

+ and {∞l } =
(0, l) + R2

+ and call any diagram of the form { k
l } an elementary Newton

diagram. For any subsets ∆,∆′ ⊂ R2
+ we consider the Minkowski sum

∆ + ∆′ = {u+ v : u ∈ ∆ and v ∈ ∆′}. One checks the following

Property 1.1. The Newton diagrams form the semigroup with respect to
the Minkowski sum. The elementary Newton diagrams generate the semi-
group of the Newton diagrams.

For any Newton diagram ∆ we consider the set N (∆) of the compact
faces of the boundary of ∆. If ∆ has vertices v0, v1, . . . , vm then N (∆) =
{[vi−1, vi] : i = 1, . . . ,m}. For any segment S ∈ N (∆) we denote by |S|1
and |S|2 the lengths of the projections of S on the horizontal and vertical
axes. We call |S|1/|S|2 the inclination of S. If ∆ intersects both axes then

∆ =
∑

S

{

|S|1
|S|2

}

(summation over all S ∈ N (∆)) and this representation is

unique.

Now, let f =
∑

cαβX
αY β be a power series. We put supp f = {(α, β) ∈

N2 : cαβ 6= 0}, ∆X,Y (f) = ∆(supp f) and Nf = N (∆(f)). We call ∆X,Y (f)
the Newton diagram (or polygon) of the power series f . Let n > 0 be an
integer. Let f = f(X,Y ) be a power series Y -regular of order n, i.e. such
that ord f(0, Y ) = n. Let C{X}∗ =

⋃

p≥1 C{X1/p} be the ring of Puiseux
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series. We have the Newton-Puiseux factorization

f(X,Y ) = U(X,Y )
n

∏

i=1

(Y − αi(X)), U(X,Y ) is a unit in C{X,Y }

where αi(X) ∈ C{X}∗ for i = 1, . . . , n.

Theorem 1.2. (Newton-Puiseux Theorem) For every q ∈ Q ∪ {∞} let
mq be the number of roots αi(X) such that ordαi(X) = q. Then mqq (by
convention 0 · ∞ = 0) is an integer or ∞ and

∆X,Y (f) =
∑

q

{

mqq
mq

}

.

1.3. Nondegeneracy
Now, let f =

∑

cαβX
αY β be a power series. For any segment S ∈ N (f)

we put in(f, S) =
∑

cαβX
αY β where (α, β) ∈ S.

According to [Kou1976] , the series f is nondegenerate if for every S ∈
N (f) the polynomial in(f, S) has no critical points in the set C∗×C∗, where
C∗ = C \ {0}. A lot of applications of the Newton diagrams are based on
the following

Theorem 1.3. ([GarLenPł2007], [Len2008]) Suppose that f, g ∈ C{X,Y }
are reduced power series such that ∆(f) = ∆(g). Then

(i) if f and g are nondegenerate then the curves f = 0 and g = 0 are
equisingular,

(ii) if f is nondegenerate but g is degenerate then f = 0 and g = 0 are not
equisingular.

Let ∆ ⊂ R2
+ be a Newton diagram. It is easy to check that ∆ = ∆(f)

for a reduced nondegenerate power series f if and only if the distances from
∆ to the axes are ≤ 1. We call such diagrams nearly convenient. Ev-
ery Newton diagram which intersects both axes (convenient in the sense of
Kouchnirenko) is nearly convenient. If ∆ is nearly convenient then the re-
duced nondegenerate power series f such that ∆ = ∆(f) form an open dense
subset in the space of coefficients.

Let us consider an invariant I of equisingularity. For every nearly conve-
nient Newton diagram ∆ we put I(∆) = I(∆(f)) where f is a nondegenerate
reduced power series. According to the theorem quoted above I(∆) is de-
fined correctly (does not depend on f). There is a natural problem: calculate
I(∆) effectively in terms of ∆. The most known result of this kind is due to
Kouchnirenko [Kou1976].

To formulate it let us consider for every nearly convenient Newton dia-
gram ∆ a convex subset ∆̃ of R2

+ defined to be the intersection of all half-
planes containing ∆ whose boundary is the line extending a face S ∈ N (∆)
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with R2
+. If N (∆) = ∅ then by convention ∆̃ = R2

+. Let (a, 0) (resp. (0, b))

be the point of ∆̃ ∩ {β = 0} (resp. ∆̃ ∩ {α = 0}) closest to the origin. Let
us put µ(∆) = 2V − a− b+ 1 where V is the area of R2

+ \ ∆̃. Then we have

Theorem 1.4. (see [Kou1976], [GarLenPł2007]) For any power series
f ∈ C{X,Y } µ0(f) ≥ µ(∆(f)). The equality holds if and only if f is
nondegenerate.

Note that Kouchnirenko proved a much more general result concerning
isolated singularities in n dimensions. In the case n = 2 the result is more
precise: the equality µ0(f) = µ(∆(f)) holds if and only if f is nondegenerate
and we do not need the assumption “f is convenient”.

Theorem 1.3 can be easily deduced from the famous µ-constant theo-
rem [LêR1976] and Kouchnirenko’s result. One can give also a direct, ele-
mentary proof [Len2008]. Let us end this section with

Example 1.5. Let f(X,Y ) =
∑

cαβX
αY β ( α

w1
+ β

w2
= 1 where w1, w2 ≥ 2

are rational numbers) be a weighted homogeneous polynomial of order > 1.
Then R2

+\∆̃(f) is the triangle with sides α = 0, β = 0 and α/w1+β/w2 = 1.
If f is nondegenerate then by Theorem 1.4 µ0(f) = µ(∆(f)) = (w1−1)(w2−
1) (the Milnor-Orlik formula).

2. The jacobian Newton polygon

The following lemma is well-known (see, for example [Del1991] or
[Pł2004]).

Lemma 2.1. Let f, g ∈ C{X,Y } be two power series without constant term.
Let J(f, g) = (∂f/∂X)(∂g/∂Y ) − (∂f/∂Y )(∂g/∂X) be the Jacobian of the
pair (f, g). Then

(f, J(f, g))0 = µ0(f) + (f, g)0 − 1.

The right side of the above equality is finite if and only if the left is too.

Assume that l = 0 is a regular curve. Let f = 0 be a reduced curve
such that J(f, l)(0, 0) = 0. If l = 0 is not a branch of f = 0 then we call
J(f, l) = 0 the polar curve of f = 0 relative to l = 0. It depends on the
power series f and l.

If l = bX − aY is a nonzero linear form then

J(f, l) = a(∂f/∂X) + b(∂f/∂Y )

and we speak about the polar curve relative to the direction (a : b) ∈ P1(C).
Using Lemma 2.1 it is easy to check the following two properties. We assume
J(f, l)(0, 0) = 0.

Property 2.2. The regular curve l = 0 is not a branch of the curve f = 0
if and only if l = 0 is not a branch of the polar curve J(f, l) = 0.
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Recall that two curves are transverse if they have no common tangent.

Property 2.3. If the curves l = 0 and f = 0 are transverse then the
curves l = 0 and J(f, l) = 0 are transverse, too.

In the sequel we assume that f = 0 is a reduced curve and that the
regular curve l = 0 is not a branch of f = 0.

Recall that J(f, l)(0, 0) = 0 and let J(f, l) = h1 · · ·hs be the decomposi-
tion of J(f, l) into irreducible factors. Then the rational numbers

(f, hj)0
(l, hj)0

, j = 1, . . . , s

are called the polar invariants of f = 0 relative to l = 0. Let Q(f, l) be the
set of polar invariants. If J(f, l)(0) 6= 0 then we put Q(f, l) = ∅. For every
polar invariant q ∈ Q(f, l) we put

Aq = {j ∈ [1, s] :
(f, hj)0
(l, hj)0

= q}

and

Jq =
∏

j∈Aq

hj.

Thus

J(f, l) =
∏

q

Jq and
(f, Jq)0
(l, Jq)0

= q for q ∈ Q(f, l).

We call mq = (l, Jq)0 the multiplicity of the polar invariant q. Using
Lemma 2.1 we check

Property 2.4.
∑

q

mq = (f, l)0 − 1,
∑

q

mqq = µ0(f) + (f, l)0 − 1

where the summation is over all q ∈ Q(f, l).

Let η0(f, l) = sup Q(f, l) be the maximal polar invariant (η0(f, l) = −∞
if J(f, l)(0, 0) 6= 0). Property 2.4 implies

Property 2.5. Suppose that (f, l)0 > 1. Then

µ0(f)

(f, l)0 − 1
+ 1 ≤ η0(f, l) ≤ µ0(f) + 1.

Moreover

η0(f, l) =
µ0(f)

(f, l)0 − 1
+ 1

if and only if there exists exactly one polar invariant of f = 0 relative to
l = 0.
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From the above property it follows that a regular plane curve f = 0 has
exactly one polar invariant, equal to 1 relative to any nontransverse regular
curve l = 0. In the sequel we assume that f = 0 is a singular reduced curve.

Following Teissier [Te1980] we define the jacobian Newton polygon by
putting

Q(f, l) =
s

∑

j=1

{

(f, hj)0
(l, hj)0

}

.

It is easy to see that

Q(f, l) =
∑

q

{

mqq
mq

}

.

Property 2.6. The jacobian Newton polygon intersects the axes at points
(0, (f, l)0−1) and (µ0(f)+(f, l)0−1, 0). All faces of Q(f, l) have inclinations
strictly greater than 1.

The above property follows from Property 2.4 and from the following
formula

(f, hj)0 = inf

{(

∂f

∂X
, hj

)

0

,

(

∂f

∂Y
, hj

)

0

}

+ (l, hj)0 for j = 1, . . . , s.

(0, (f, l)0 − 1)

mq

mqq (µ0(f) + (f, l)0 − 1, 0)

Q(f, l)

Remark 2.7. If f = 0 and l = 0 are transverse then the polar in-
variants are of the form (f, hj)0/ordhj , j = 1, . . . , s (see Property 2.3).
The jacobian Newton polygon joins the points (0, ord f − 1) and (µ0(f) +
ord f − 1, 0). Its faces have inclinations greater than or equal to ord f . One
checks that ord f is the polar invariant if and only if the number of tangents
t(f) is strictly greater than 1. Then t(f) − 1 is the multiplicity of ord f
(see [LenMaPł2003]).

A local isomorphism Φ is a pair of power series without constant term
such that Jac Φ(0, 0) 6= 0. The jacobian Newton polygon Q(f, l) is an ana-
lytic invariant of the pair (f, l):

Property 2.8. Let Φ be a local isomorphism. Then Q(f ◦ Φ, l ◦ Φ) =
Q(f, l).
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Let f = 0 and f ′ = 0 be reduced singular curves and let l = 0 and l′ = 0
be regular branches such that l = 0 (resp. l′ = 0) is not a component of f = 0
(resp. f ′ = 0). We will say that the pairs f = 0, l = 0 and f ′ = 0, l′ = 0
are equisingular if there is an equisingularity bijection of the set of branches
fi = 0 of f = 0 and f ′i = 0 of f ′ = 0 such that (fi, l)0 = (f ′i , l

′)0 for
all i = 1, . . . , r. The following result is a refinement of Teissier’s theorem
on invariance of the jacobian Newton polygon [Te1977] in the case of plane
curve singularities.

Theorem 2.9. Suppose that the pairs f = 0, l = 0 and f ′ = 0, l′ = 0 are
equisingular. Then

Q(f, l) = Q(f ′, l′).

The proof of the above theorem may be given by purely intersection
theoretical methods (see [GwLenPł]) based on the Kuo and Lu approach
([KuoLu1977] and Section 3 of this paper).

Now let us note

Corollary 2.10. If f = 0 is a reduced singular curve and l = 0, l′ = 0
are nonsingular branches transverse to f = 0 then Q(f, l) = Q(f, l′).

We write Q(f) = Q(f, l) provided that f = 0 and l = 0 are transverse
and call Q(f) the jacobian Newton polygon of f = 0.

Corollary 2.11. Suppose that the reduced singular curves f = 0 and
f ′ = 0 are equisingular. Then Q(f) = Q(f ′).

From the last corollary it follows that the Milnor number µ0(f) and the
maximal polar invariant η0(f) = max Q(f) are invariants.

Example 2.12. Let f = (Y 3 − X5)2 − 9X11 and l = X. Then (f, l)0 =
ord f = 6 i.e. f = 0 and l = 0 are transverse. We get J(f, l) = (∂f/∂Y ) =
6(Y 3 −X5)Y 2 and

Q(f) = Q(f, l) =

{

(f, Y )0
1

}

+

{

(f, Y )0
1

}

+

{

(f, Y 3 −X5)0
3

}

=

{

20
2

}

+

{

33
3

}

.

The computations of the jacobian Newton polygons in the next two ex-
amples were done using Theorem 6.1.

Example 2.13. ([Len2008]) Let f = Y 9 + X2Y 3 + X9 and g = Y 5 +
XY 4 +X9. Then

Q(f) = Q(g) =

{

5
1

}

+

{

27
3

}

but the curves f = 0 and g = 0 are not equisingular. The curve f = 0 has 3
branches while g = 0 has 5.
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Example 2.14. Let f = X3Y 3+X2Y 4+X8+Y 7 and g = X4Y 2+X8+Y 7.
Then

Q(f) =

{

6 · 2
2

}

+

{

7 · 1
1

}

+

{

8 · 2
2

}

and

Q(g) =

{

6 · 1
1

}

+

{

7 · 3
3

}

+

{

8 · 1
1

}

.

We get ord f = ord g = 6 and µ0(f) = µ0(g) = 30. The Newton polygons
Q(f) and Q(g) have the same inclinations 6, 7, 8 and join the same points
(0, 5) and (35, 0) but Q(f) 6= Q(g).

The following simple proposition gives an effective way of computing the
jacobian Newton polygon of the pair f(X,Y ) = Y n + a1(X)Y n−1 + . . . +
an(X) (a distinguished polynomial of degree n > 1) and l(X,Y ) = X by
performing the rational operations on the coefficients a1(X), . . . , an(X). It
illustrates the leading principle of Teissier’s lectures [Te1976].

Proposition 2.15. Suppose that f(X,Y ) is an Y -distinguished poly-
nomial of degree n > 1 without multiple factors. Let T be a new vari-
able and consider the discriminant D(X,T ) = discY (f(X,Y ) − T ). Then
Q(f,X) = ∆X,T (D) (the Newton polygon of the discriminant D(X,T ) in
coordinates X,T ).

Proof. Let β1(X), . . . , βn−1(X) ∈ C{X}∗ be the Puiseux roots of equa-
tion (∂f/∂Y )(X,Y ) = 0. It is easy to see that ord f(X,β1(X)),. . . ,
ord f(X,βn−1(X)) is the sequence of polar invariants of f = 0 relative
to X appearing with their multiplicities (if h(X,Y ) = 0 is the minimal
analytic equation of the series β(X) ∈ C{X}∗ then ord f(X,β(X)) =
(f, h)0/(X,h)0). On the other hand

D(X,T ) = discY (f(X,Y ) − T ) = resultantY (f(X,Y ) − T,
∂f

∂Y
(X,Y ))

= ±
n−1
∏

j=1

(T − f(X,βj(X))).

We apply the Newton-Puiseux Theorem (see Preliminaries) to D(X,T ) ∈
C{X,T}.

Example 2.16. Let f(X,Y ) = (Y 2−X3)2−X5Y . Then f = 0 and X = 0
are transverse. We haveD(X,T ) = −256T 3+256X6T 2+288X13T−27X20−
256X19 and

Q(f) = Q(f,X) = ∆X,T (D) =

{

6
1

}

+

{

13
2

}

.
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3. Polar invariants and Puiseux series

The following lemma due to Kuo and Lu (see [KuoLu1977], Lemma 3.3)
is crucial for the approach to the polar invariants based on Puiseux series
(see [Egg1982], [GwPł2002], [Wall2003]).

Lemma 3.1. (the Kuo and Lu lemma)
Let f = f(X,Y ) ∈ C{X,Y } be a Y -regular power series of order n > 1
and let α1 = α1(X), . . . , αn = αn(X) be the Puiseux roots of the equation
f(X,Y ) = 0. If β1 = β1(X), . . . , βn−1 = βn−1(X) are the Puiseux roots of
the equation (∂f/∂Y )(X,Y ) = 0 then for each k ∈ {1, . . . , n} and for each
r > 0

#{i : ord(αi − αk) = r} = #{i : ord(βi − αk) = r}.

A short proof of the above lemma is given in [GwPł1991] (see also
[GwPł2002]).

Remark 3.2. In [KuoLu1977] the following property is stated:

(∗) for given αi, βk there exists an αj such that ord(βk−αi) = ord(βk−αj) =
ord(αi − αj).

To show that (∗) does not hold take f(X,Y ) = Y (Y −X)(Y −X2). Then
α1 = 0, α2 = X, α3 = X2 and β1 = 2

3
X + . . ., β2 = 1

2
X2 + . . .. For α2, β2

does not exist αj such that ord(β2 − α2) = ord(β2 − αj) = ord(α2 − αj).

Note also that property (∗) does not hold under the assumption added
in [Gar2000] that f(X, 0)f(0, Y ) 6= 0. To get an example it suffices to replace
the series f(X,Y ) considered above by the series f(X,Y −X).

The set of all Puiseux series C{X}∗ is an ultrametric space with the order
of contact O(ϕ, ψ) = ord(ϕ(X) − ψ(X)). That is for any ϕ, ψ, χ ∈ C{X}∗:

(i) O(ϕ, ψ) = +∞ if and only if ϕ = ψ,
(ii) O(ϕ, ψ) = O(ψ,ϕ),
(iii) O(ϕ, ψ) ≥ inf{O(ϕ, χ), O(ψ, χ)}.

Let Z ⊂ C{X}∗ be a nonempty finite subset of C{X}∗. A ball in Z is a
subset B ⊂ Z for which there are ϕ, ψ ∈ Z such that α ∈ B if and only
if O(α, ϕ) ≥ O(ϕ, ψ). We will write B = B(ϕ,O(ϕ, ψ)). For each ball B
in Z we define the diameter h(B) = inf{O(α, β) : α, β ∈ B}. Note that if
B = B(ϕ,O(ϕ, ψ)) then h(B) = O(ϕ, ψ). Let B(Z) be the set of balls in Z.
The ordered set (B(Z),≤) where B ≤ B′ if and only if B ⊃ B′ will be called
the tree over Z. If B ≤ B′ with B 6= B′ and there is no other ball between
B and B′ then we call B′ a successor of B. If h(B) < +∞ i.e. if B does
not reduce to a one-point set then B has a finite number t(B) of successors.
One has t(B) ≥ 2.
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Let f = f(X,Y ) ∈ C{X,Y } be a Y -regular power series of order n =
ord f(0, Y ) ≥ 1. Assume that f has no multiple factors and let

Zf = {α = α(X) ∈ C{X}∗ : ordα(X) > 0 and f(X,α(X)) = 0}.

Thus #Zf = n. The tree over Zf will be denoted T (f) and called the
Kuo-Lu tree model of f (see [KuoLu1977] where the balls are called bars and
h(B) is called height of B).

Example 3.3. (see [IzuKoiKuo2002]) Let f(X,Y ) = (Y − X2)(Y 2 −
X3)(Y 2 − X5). Here α1 = X2, α2 = X3/2, α3 = −X3/2, α4 = X5/2,
α5 = −X5/2 are the roots of f(X,Y ) = 0. Thus Zf = {α1, . . . , α5}
and O(Zf × Zf ) = {3/2, 2, 5/2,+∞}. It is easy to check that T (f) =
{B0, B1, B2, {α1}, . . . , {α5}} where B0 = Zf , B1 = {α1, α4, α5}, B2 =
{α4, α5}. The successors of B0 are B1, {α2}, {α3}, the successors of B1

are {α1} and B2 and the successors of B2 are {α4} and {α5}. Thus we have
t(B0) = 3, t(B1) = 2, t(B2) = 2. We can represent the tree T (f) in the
following figure

h = 3/2

h = 2

h = 5/2

h = +∞
{α4} {α5}{α1}{α2}{α3}

B0

B1

B2

The balls are represented by points situated on different levels corresponding
to the heights h ∈ O(Zf × Zf ). We join every ball by continuous lines with
its successors.

For each α ∈ Zf and for each ball B ∈ T (f) we put O(α,B) =
sup{O(α, ϕ) : ϕ ∈ B}. Let T (f)′ = {B ∈ T (f) : h(B) < +∞} and
put

q(B) =
∑

α∈Zf

inf{O(α,B), h(B)}.

Note that O(α,B) = O(α, ϕ) for any ϕ ∈ B provided that O(α,B) < h(B).
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Theorem 3.4. Let f = f(X,Y ) ∈ C{X,Y }, n = ord f(0, Y ) > 1 be a
power series without multiple factors. Then

(i) q ∈ Q(f,X) if and only if q = q(B) for a ball B ∈ T (f)′,
(ii) mq =

∑

B(t(B) − 1) where the summation is over all B ∈ T (f)′ such
that q = q(B).

The above quoted theorem is implicit in [KuoLu1977]. Part (i) was
proved in [GwPł2002]. A short proof of (i) and (ii) is given in [GarGw2008].

Example 3.5. Let us calculate Q(f,X) for f = (Y −X2)(Y 2 −X3)(Y 2 −
X5). Using the notation from Example 3.3 we get q(B0) = (#Zf )h(B0) =
5 · (3/2) = 15/2, q(B1) = O(α2, B1) + O(α3, B1) + (#B1)h(B1) = (3/2) +
(3/2)+3·2 = 9, q(B2) = O(α1, B2)+O(α2, B2)+O(α3, B2)+(#B2)h(B2) =
2 + (3/2) + (3/2) + 2 · (5/2) = 10. Consequently, we get

Q(f) = Q(f,X) =

{

(15/2)(3 − 1)
3 − 1

}

+

{

9(2 − 1)
2 − 1

}

+

{

10(2 − 1)
2 − 1

}

=

{

15
2

}

+

{

9
1

}

+

{

10
1

}

.

Remark 3.6. In [Len2004] the polar invariants and their multiplicities
are computed by using the Newton algorithm.

4. The case of one branch

Let f = 0 be a singular branch. For any regular curve l = 0 the semigroup
S(f) has the (f, l)0-minimal system of generators b̄0, b̄1, . . . , b̄h defined by
conditions

(i) b̄0 = (f, l)0,
(ii) b̄k = min(S(f) \ (N b̄0 + . . .+ N b̄k−1)),
(iii) S(f) = N b̄0 + . . .+ N b̄h.

We will write 〈b̄0, . . . , b̄h〉 instead of N b̄0 + . . . + N b̄h. If f = 0 and
l = 0 are transverse then (f, l)0 = ord f and the corresponding system
of (f, l)0-minimal generators will be denoted by β̄0, β̄1, . . . , β̄g. Here β̄0 =
min(S(f) \ {0}). Let n1, . . . , nh be the integers defined to be

nk =
GCD(b̄0, . . . , b̄k−1)

GCD(b̄0, . . . , b̄k)
for k = 1, . . . , h.

Then nk > 1 for all k. Now we can state the result due to [Sm1875],
[Mer1977] and [Eph1983].
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Theorem 4.1. (Smith–Merle–Ephraim) Suppose that f = 0 is a singular
branch and l = 0 a regular curve. Let b̄0, . . . , b̄h be the (f, l)0-minimal system
of generators of the semigroup S(f). Then with the notation introduced above

Q(f, l) =
h

∑

k=1

{

(nk − 1)b̄k
(nk − 1)n1 . . . nk−1

}

.

By convention the empty product which appears for k = 1 is equal to 1.

The sequence of generators can be characterized in purely arithmetical
terms. Let us recall (see [Bre1972], [Zariski1973], [Del1994], [GwPł1995]).

Theorem 4.2. Let b̄0, b̄1, . . . , b̄h be a sequence of strictly positive integers.
Then the following two conditions are equivalent.

(I) There is a singular branch f = 0 and a regular curve l = 0 such that
b̄0, b̄1, . . . , b̄h is the (f, l)0-minimal system of generators of the semigroup
S(f),

(II) the sequence b̄0, b̄1, . . . , b̄h satisfies the conditions:

(Z1) the sequence ek = GCD(b̄0, . . . , b̄k) (k = 0, 1, . . . , h) is strictly de-
creasing and eh = 1,

(Z2) the sequence ek−1b̄k (k = 1, . . . , h) is strictly increasing.

Example 4.3. For any integer n ≥ 0 there is a branch f = 0 with the
semigroup 〈6, 8, 27 + 6n〉. By Theorem 4.1 we get

Q(f) = 2

{

8
1

}

+ 3

{

9 + 2n
1

}

.

Using Theorems 4.1 and 4.2 we get

Corollary 4.4. Let f = 0 be a singular branch. Then

(1) Q(f, l) is a complete invariant of the pair f = 0, l = 0;
(2) Q(f) is a complete invariant of the branch f = 0.

Theorem 4.5. [GarGw2008] Let f = 0 and g = 0 be two reduced curves
such that Q(f) = Q(g). Suppose that f = 0 is an irreducible curve. Then
g = 0 is also irreducible.

For every sequence b̄0, . . . , b̄h satisfying conditions (Z1) and (Z2) (in the
sequel we call such a sequence (Z)-sequence) we put

N (b̄0, . . . , b̄h) =
h

∑

k=1

{

(nk − 1)b̄k
(nk − 1)n1 . . . nk−1

}

.

and call N (b̄0, . . . , b̄h) the Newton diagram associated with the sequence
b̄0, . . . , b̄h. Theorems 4.1, 4.5 and Proposition 2.15 give rise to the following
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Corollary 4.6. (Irreducibility Criterion) Let f = Y n+a1(X)Y n−1+. . .+
an(X) ∈ C{X}[Y ] be a distinguished polynomial of degree n > 1 without
multiple factors. Then f is irreducible if and only if the Newton diagram
of the discriminant D(X,T ) = discY (f(X,Y ) − T ) is equal to the Newton
diagram N (b̄0, . . . , b̄h) associated with a (Z)-sequence b̄0 = n, b̄1, . . . , b̄h.

Example 4.7. (see [Kuo1989] and [Abh1989]). The following two examples
are taken from [Kuo1989].

I. Let f = (X2−Y 3)2−Y 7. Then the curves f = 0 and Y = 0 are transverse

and Q(f) = Q(f, Y ) =

{

6
1

}

+

{

14
2

}

. To decide if f is irreducible suppose

that Q(f) = N (b̄0, . . . , b̄h) for a (Z)-sequence b̄0, . . . , b̄h. Then h = 2 since
Q(f) has two faces and b̄0 = ordf = 4. From condition

{

(n1 − 1)b̄1
n1 − 1

}

+

{

(n2 − 1)b̄2
(n2 − 1)n1

}

=

{

6
1

}

+

{

14
2

}

we get b̄1 = 6 and b̄2 = 14. A contradiction since GCD(b̄0, b̄1, b̄2) = 2.
Therefore f is not irreducible.

II. Let f = (X2 − Y 3)2 − Y 5X. The curves f = 0 and Y = 0 are transverse

and Q(f) = Q(f, Y ) =

{

6
1

}

+

{

13
2

}

(see Example 2.16). It is easy to check

that Q(f) = N (4, 6, 13) and that 4, 6, 13 is a (Z)-sequence. Therefore f is
irreducible with semigroup S(f) = 〈4, 6, 13〉.

5. Polar invariants in many branched case

Let ϕ, ψ ∈ C{X,Y } be irreducible power series. The contact coefficient
(in the sense of Hironaka) with respect to a regular curve l = 0 is the rational
number

h(ϕ, ψ; l) =
(ϕ, ψ)0
(l, ψ)0

.

If l = 0 and ψ = 0 are transverse then h(ϕ, ψ; l) = (ϕ, ψ)0/ordψ and we
write h(ϕ, ψ) instead of h(ϕ, ψ; l).

Let f = 0 be a reduced curve with r > 1 branches. To describe the
contacts of fi = 0 with the branches fj = 0, j 6= i let us consider the
following diagram

Hi(f, l) =
r

∑

j=1

{

(fi, fj)0
(l, fj)0

}

and the set

Hi(f, l) =

{

(fi, fj)0
(l, fj)0

: j 6= i

}

.
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Note that the diagram Hi(f, l) lies above horizontal axis and has vertices
(0, (l, f)0) and ((fi, f/fi)0, (l, fi)0). The distance from Hi(f, l) to the hori-
zontal axis is equal to (l, fi)0.

(0, (l, f)0)

(0, (l, fi)0)
((fi, f/fi)0, (l, fi)0)

We omit the simple proof of the following

Lemma 5.1. The line with slope −1/τ (τ > 0) supporting Hi(f, l) intersects
the horizontal axis at the point

(

r
∑

j=1

inf{(fi, fj)0, τ(l, fj)0}, 0
)

.

Now let

qi(τ) =
1

(l, fi)0

r
∑

j=1

inf{(fi, fj)0, τ(l, fj)0}

for τ > 0 and i = 1, . . . , r. According to Lemma 5.1 the function qi is deter-
mined by the diagram Hi(f, l) and has an obvious geometric interpretation.
The functions qi are piecewise linear, continuous and strictly increasing. The
following explicit formula for polar quotients of a many-branched curve is
due to [GwPł2002].

Theorem 5.2. Let f = f1 . . . fr be a reduced power series with r > 1
irreducible factors. Then

Q(f, l) =
⋃

qi(Q(fi, l) ∪Hi(f, l)).

We call the elements of qi(Q(fi, l) ∪Hi(f, l)) polar invariants associated
with the branch fi = 0. A polar invariant can be associated with more than
one branch.

The polar invariants associated with the branch fi = 0 can be inter-
preted in terms of the Newton diagram Hi(f, l) and the jacobian Newton
polygon Q(fi, l) of the branch fi = 0. To this end call a line supporting
Hi(f, l) distinguished if it extends a face of Hi(f, l) or is parallel to a face
of Q(fi, l). Then the polar invariants associated to the branch fi = 0 are
exactly the quotients of the form p

di
where (p, 0) is the point of intersection
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of a distinguished supporting line with the horizontal axis and di = (l, fi)0
is the distance from Hi(f, l) to this axis.

Let us calculate η(f, l) = supQ(f, l). Using the fact that the functions
qi are increasing we get

Theorem 5.3. [Pł2001]

η(f, l) =
r

max
i = 1

{

max

{

η(fi, l), max
j 6= i

(fi, fj)0
(l, fj)0

}

+
1

(l, fi)0

∑

j 6=i

(fi, fj)0

}

.

For the applications of the above formula see [GarKP2005].
If f = 0 and l = 0 are transverse then we write Hi(f) = Hi(f, l).

Example 5.4. Even when f = 0 and g = 0 are curves with smooth
branches the conditions Hi(f) = Hi(g) (i = 1, . . . , r) do not imply the
equisingularity of f = 0 and g = 0. Let f = f1 . . . f10 and g = g1 . . . g10

where f1 = Y − X − X2, f2 = Y − X − 2X2, f3 = Y − X − 3X2, f4 =
Y − 2X − X2, f5 = Y − 2X − 2X2, f6 = Y − 2X − 3X2, f7 = Y − X,
f8 = Y − X − X3, f9 = Y − 2X, f10 = Y − 2X − X3 and g1 = Y − X,
g2 = Y −X−X2, g3 = Y −X−2X2, g4 = Y −X−3X2, g5 = Y −X−4X2,
g6 = Y − 2X − 2X2, g7 = Y − 2X, g8 = Y − 2X −X3, g9 = Y − 2X −X2,
g10 = Y − 2X −X2 −X3. Then Hi(f) = Hi(g) for i = 1, . . . , 10 but f = 0
and g = 0 are not equisingular.

To construct a complete invariant of the pair f = 0, l = 0 the notion of
partial polar quotient introduced in [Egg1982] is useful. E. García Barroso
characterized the type of equisingularity of the curve by matrices of partial
polar quotients (see [Gar2000]).

6. Polar invariants and the Newton diagram

We want to calculate the jacobian Newton polygon of a nondegenerate
singularity f = 0 in terms of the Newton diagram ∆(f). To formulate the
result we need some notions. Let f ∈ C{X,Y } be a nonzero power series
without constant term. The segment S ∈ Nf is principal if |S|1 = |S|2. If
a principal segment exists it is unique. Put N ′

f = Nf \ {principal segment}.
For every segment S ∈ N ′

f we put m(S) = min(|S|1, |S|2) − 1 if 1 ≤ |S|1 <
|S|2 and S has a vertex on the vertical axis or if 1 ≤ |S|2 < |S|1 and S has
a vertex on the horizontal axis. Moreover we let m(S) = min(|S|1, |S|2) for
all remaining cases.

Let α/α(S) + β/β(S) = 1 be the equation of the line containing S.
Obviously α(S), β(S) > 0 are rational numbers and α(S)/β(S) = |S|1/|S|2.

Recall that t(f) is the number of tangents to f = 0. If f is nondegenerate
then t(f) can be read from the Newton diagram ∆(f). We have the following
result due to [LenPł2000] (see also [LenMaPł2003]).
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Theorem 6.1. Suppose that f is a nondegenerate singularity. Then

Q(f) =

{

(ord f)(t(f) − 1)

(t(f) − 1)

}

+
∑

S∈N ′

f

{

max(α(S), β(S))m(S)

m(S)

}

.

We put by convention { 0
0
} = R2

+ (the zero Newton diagram).

Example 6.2. Let f =
∑

cαβX
αY β with summation over all (α, β) ∈ N2

such that (α/w1) + (β/w2) = 1 where w1, w2 ≥ 2 are rational numbers
defines a reduced curve f = 0. Then η0(f) = max(w1, w2) by Theorem 6.1.
On the other hand µ0(f) = (w1 − 1)(w2 − 1) by the Milnor-Orlik formula.
Hence the set of weights

{w1, w2} =

{

µ0(f)

η0(f) − 1
+ 1, η0(f)

}

is an invariant of f = 0.

7. Application to pencils of plane curve singularities

When studying the singularities at infinity of polynomials in two complex
variables of degree N > 1 one considers the pencils of plane curves of the
form ft = f − tlN , t ∈ C where f, l ∈ C{X,Y } are coprime and a regular
curve l = 0 is not a component of the local curve f = 0 (see [Eph1983],
[GarPł2004], [LenMaPł2003], [Pł2004]). Let U ⊂ C be a Zariski open subset
of C. We say that the pencil (ft : t ∈ U) is equisingular if the Milnor
number µ0(ft) is constant for t ∈ U . This means by µ-constant theorem for
pencils [Cas2000] that for any t1, t2 ∈ U the curves ft1 = 0 and ft2 = 0 are
equisingular.

Proposition 7.1. ([Eph1983], [GarPł2004]) Let f = 0 be a reduced curve
and l = 0 a regular curve which is not a branch of f = 0. Let N > 0 be an
integer. Then

(1) the pencil (f − tlN : t 6= 0) is equisingular if and only if N 6∈ Q(f, l),
(2) the pencil (f − tlN : t ∈ C) is equisingular if and only if η(f, l) =

sup Q(f, l) < N .

Using the above proposition and a result of Ephraim [Eph1983] we get
the following

Proposition 7.2. Let f = 0 be a singular branch, l = 0 a regular one. Let
(b̄0, b̄1, . . . , b̄h)0 be the (f, l)0-minimal system of generators of the semigroup
S(f). Then the following three conditions are equivalent

(AM) eh−1b̄h < (b̄0)
2,

(I) all series ft = f − tlb̄0, t ∈ C are irreducible,

(E) the pencil (ft = f − tlb̄0 : t ∈ C) is equisingular.
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Proof. By Theorem 4.1 we have η0(f, l) = eh−1b̄h/b̄0. Therefore (AM) is
equivalent to the inequality η0(f, l) < b̄0 and (AM) ⇔ (E) follows from
Proposition 7.1(2). Obviously (E) ⇒ (I), the implication (I) ⇒ (E) is due
to Ephraim [Eph1983], Corollary 2.2.

Note that (AM) is the famous Abhyankar–Moh inequality (see
[AbhMoh1975], [GwPł1995], [Cas2000]). For more applications of polar in-
variants to the singularities at infinity we refer the reader to [GarPł2004],
[GwPł2005], [Pł2002] and to the papers cited in these articles.
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