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Summary. Sharp estimates of the Nullstellensatz exponent on analytic and algebraic sets
are given.

1. Local case. Let X be an analytic subset of an open subset {2 of the
space C™ of purc dimension k. Denote by A the unit disc in C

LEMMA 1.1. Suppose that ¢ = (¢1,...,¢5) : X — AF is a proper holo-
morphic mapping of multiplicity p. If 1 <1 < k, and a holomorphic function
g : X — C vanishes on the set {z € X : ¢1(z) = ... = pi(z) = 0}, then
there exist h, ..., h; holomorphic on X such that g* = @1hy + ... + pihy.

Proof. Let us consider Y = {(p(z),9(z)) € A* xC:z € X}. It is
easy to check that there exists a polynomial P € O(AF)[T] distinguished in
T of degree p such that Y = P~%(0). Let us write

P((y,2),T) =T* + ay(y, 2)T* " + ... + au(y, 2)
" where (y,2) € Al x A¥~t = AF. Since Y N {((y,2),1) € AP x C:y=0} =
({0} x AF=Y) x {0}, then a3, .. .a, belong to the ideal of the set {0} x A*—!
in the ring O(AF). Therefore we obtain for each j = 1,...,u
a’j(ya Z) = yla'j,l(y) Z) +...+ yla'j,l(y: Z), (y7 Z) € Ak
where a;; € O(AF) for i = 1,...,1. Now, observe that

P(((¢1(2), .- @1(2)), (p142(2), - - 0x(2))), 9(2)) = 0,
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and by a simple calculation we get the required result. :

Now, suppose that X is an analytic subset of 2 C C™ of pure di-
mension £ and that holomorphic functions f;,...f; on X realize a set-
theoretic complete intersection. This means that dim f~1(0) = & — I, where
f={(fi,--.,fi) + X — C. Observe that the graph of f meets properly
£2 x {0} in the space 2 x C'. Then the intersection product of above sets is
an analytic cycle on 2 x C! defined by the formula f-(£2 x {0}) = Y cacC,
where the summation extends over all analytic components C = Z x {0} of
F710) x {0} and ac =i(f - (22 x {0}!), C) denotes the intersection multi-
plicity along the component C in the sense of Draper ([5], Def. 4.5, see also
[16], [17]). In this situation the cycle of zeroes of f (cp. [16]) is defined to be

Zf = ZO‘ZX{O}’Z
z

where the summation extends over all irreducible components of f ~1(0).

or an irreducible analytic subset Y of {2 and a € £2 we denote by v(Y,a)
the degree of Y at the point a (cf. [5], p. 194). This degree is equal to the
classical algebraic Samuel multiplicity, and so called, Lelong number of Y
at the point a. We will consider a natural extension of this definition to the
case of an arbitrary analytic cycle. Namely, if A = Yy ayY is an analytic
cycle in 2 C C™, then the sum

v(A,a) = Zayll(Y, a)
Y

is well defined and we call it the degree of the cycle A at the point a.

HEOREM 1.2. Suppose that X is an analytic subset of 2 C C™ of pure
dimension k, holomorphic functions fi,... fi on X realize a set-theoretic
complete intersection and denote f = (fy,... , f1) : X — CL. If holomorphic
function g : X — C vanishes on the set F7YH0) and a € 2, then there exist
an open neighbourfiood V' of a in the set X and hq,... h; € O(V') such that

[9(z)]* = filz)hi(z) + ... + filz)h(z) forxeV
where p = v(Zs,a) is the degree of the cycle of zeroes of f at a.

roof. Since dim f~(0) = k — I, then without loss of generality we
can assume that a = 0 and {0}*~! x C™~(k=) properly intersects cycle Z f
at 0 with (minimal possible) multiplicity u. Let us consider the mapping

P X3 ('T yroe o 1$’m) - (fl(m)a'-'afl(w),:l"l,"-)wk—l) € Ck

Since 0 is an isolated point of ©71(0) then there exists V its open neighbour-
hood such that ¢ | V : V — o(V) c C* is proper and e~ 10) NV = {0}.
Moreover, we can assume that (V) = A*, By Lemma 1.1 it is sufficient to
show that the mapping ¢ has multiplicity u.
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Denote Y = f | X NV and observe that the multiplicity of ¢ is equal to
the multiplicity of the restricted projection 7 | Y : Y 3 (z1,... Ty, ¥1,-- -, Y1)
= (Y1, Y, T1,- .- Tp—1) € A¥. The multiplicity of 7 | Y is equal to
the multiplicity of the intersection of ¥ and =~1(0). By ([16], Thm 2.2)
we have Y - 771(0) = (Y - (V x {0})) -vxqop ({0}F7F x cm-(k-Dy =
Z; - ({0}t x Cm~(*=DYy = ;,{0} and the proof is completed.

2. The Max Noether Theorem on algebraic varieties. In this part
we present two versions of the Max Noether Theorem. We shall use them
in the next parts to extend previous local result to the case of polynomial
mappings on algebraic set.

Let X be an algebraic subset of the space C™ and let Q, Py,..., P, be
polynomials on X. We say that the system Q, Py, ..., P, satisfies Noether’s
condition at @ € X if the germ of @) at a belongs to the ideal generated
by the germs of P,..., P; at a in the ring Ox ,. Note that we can replace
the ring Ox , in the above definition by the ring Rx , of germs of rational
functions regular at a ([7], Prop. 1, p. 462).

PROPOSITION 2.1. If for each point a € X the system Q,Py,...,P, sa-
tisfies Noether’s condition at a then there exist polynomials Ry,..., R, on
X such that '

Q =P R +...+ PR,.

Proof. Let us take generators Gy,..., Gy of the ideal I(X) in the ring
Clz1,...,Zm]. By Serre’s Lemma ([7], VII.15.2) at each point a € X the
germs of Gy, ..., G, generate the ideal I(X,) in the ring O¢m ,. Denote by
Q,P,..., P, arbitrary extensions of @, Py, ... P; to the whole space C™. It
is easy to verify that the germs of the system G, ..., Gy, P, ..., P, generate
the germ of Q at each point ¢ € C™ in Og¢m q. By the main theorem of [14]
there exist polynomials Hy,..., Hsy, on C™ such that

Q=PH +...+ BH,+GHyyy +...+GyHy,
Now Ry = Hy | X,..., R, = H, | X satisfy the assertion of the Proposition
2.1

Now suppose that X = C™ and a polynomial mapping P = (Py,...,P):
C™ — C* realizes a set-theoretic complete intersection in the space C™ i.e.
dim P~1(0) = m — s > 0. Let P~1(0) = Uj=1Z; be a decomposition of
P~1(0) into irreducible components.

PROPOSITION 2.2. Let us suppose that there exist points a; € Z; such that
the system Q, Py, ..., P, satisfies Noether’s condition at aj forj=1,...,r.
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Then there ezist polynomials Ry, ..., R, such that
Q=PR +...+PR; n c™.

Proof. Let I be the ideal generated by Pi,. .., Ps in the ring of poly-
nomials in m variables. We may assume that 1 ¢ I. Let I =I; N...N I, be
a reduced primary decomposition of I. By Maculay’s theorem on complete
intersections the ideals J; = Ii,...,Jr = VI, are minimal prime ideals of
I, and so J; = ideal(Z;). Since Q, Py,.. ., Ps satisfies Noether’s condition at
aj, there exist polynomials S; such that S;j(a;) # 0 and

SjQ = P1R1j + ...+ PSRSJ'

in the ring of polynomials for j = 1,...,r. Therefore S;Q € I, S; € J; and
Q€I for j =1,...,r. Consequently Q € I. '

3. Nullstellensatz on algebraic varieties. Let us start with the fol-
lowing basic result

THEOREM 3.1. Suppose that X is an algebraic subset of C™ of pure
dimension k, polynomial functions Fy,...F; on the set X, realize a set-
theoretic complete intersection. If a polynomial G : X — C vanishes on the
set F~1(0), where F = (F,...,F}), then there exist polynomials Hy, ..., H)
on X such that

Gt =FHi+ ...+ FiH
where p = deg F is the degree of the graph of F'.

Proof. By Theorem 1.2 and Proposition 2.1 it is sufficient to show
that ¥(Zp,a) < degF for every a € F~1(0). To prove this, fix an ¢ and
an affine subspace A of C™ of dimension m — (k — I) such that a € A,
dim(F~1(0) N A) = 0 and deg Zr - A = deg Zr. Since (Zr - A) X {o}t =
F-(A x {0}!), we have v(Zp,a) < deg(F - (A x {0}")) < deg F and the proof
is complete.

Now for every algebraic subset X of C™ we define the extended degree
of X by the formula

where
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is tho decomposition of X into irreducible components. Thus §(X) = deg X
whon X is an algebraic set of pure dimension. Basic properties of 6(X) are

given in (7], pp. 419-420.

THEOREM 3.2 (cf. [3], Proposition 2). Let X be an dlgebmic subset of C™
and let P,Q : X — C be polynomial functions such that P~1(0) Cc Q~1(0).
Then there exists a polynomial A : X — C such that

Q' =AP
where u = §(P) is the extended degree of the graph of P.

Proof. Let X = U::j X; be the decomposition of X into irreducible
components. Fix j and consider P | X; : X; — C. If P | X; # 0 then
by Thmm 3.1 there exists A; : X — C such that Q* — A;P | X; = 0
for p; = deg(P | X;). If P | X; = 0 then we have Q | X; = 0 and so
Q" — AjP| X; =0 for Aj = 1. Therefore

ﬁ(Q"j —A;jP)=0 on X.

=1
Consequently Q* = AP on X with = Z;=1 pi = 6(P).

For a system of polynomials P,..., P; on C™ denote by (Py,..., P) the
ideal generated by Pi,..., P in the ring of polynomials. Let N(Py,..., P;)
be the smallest integer N > 1 such that QN € (P,...,P,) for every Q €

V(P1,...,P;). We put N(§) = 1.

PROPOSITION 3.3. Let 1 < s < m+ 1 and d; = degP;, > 0 for i =
1,...,s. Then:

N(Pla--')Ps) <(dl'---'ds)N(P17°'-7Ps—1)
for 1 < s < m, and
N(Py,...,Ppy1) <(d1 ... dp)N(P1,...,Py)

provided dp,+1 = min]*F1(d;).

Proof.If s = 1 then Proposition 3.3 follows immediately from The-
orem 3.2, Let s > 1 and X = ﬂf;ll P71(0). We may assume that X # 0.
By properties of extended degree ([7], p. 420) we get §(X) < d;-...-d,_;.
IfQ € +(P,...,P) then X N P;710) ¢ X NnQ'(0) and Theorem 3.2
implics Q* = AP, with p = §(P; | X) < §(X)d, < dy - ... ds. Therefore
Q' — AP, € \/(Py,...,P,_1), (Q* — AP)N(P1uPst) ¢ (P P, 1) and
the first part of (3.3) follows.

In the case s = m + 1 we must change a little our arguments. After
having replaced Py,...,P,, by P, — c1Pmy1y. s P — €y Py with generic




36 A. Ploski, P. Tworzewski

constants cp,...,¢, we may assume that F,,4; is integral over the ring
C|Py,..., Py]. Consequently the set P, .1(X) is finite and we check easily
that g = §(Ppny1 | X) < 6(X)<di-...-dnp. Then we use Theorem 3.2 like
in the first part of the proof, and proposition follows.

Let d = max?_; d;. By induction we get from Proposition 3.3

(%) N(P,...,P,) <d*32 ifl1<s<m.
If s = m + 1 then we get by (x) and the second part of Proposition 3.3
(%)  N(Ph,...,Pas1) < d"‘N(Pl, P, < dmd™F = g™

If s > m+1 then 4/ Pl, \/(Rl, R,.11) where R; are linear
combinations of Py, ..., P; (cf [9]) and (x), (**) imply

(% * ) N(Py,...,P) < ™5 for every s > 1.

This kind of estimate was obtained in the main theorem of [3]. Let us recall
that from the fundamental Kolldr result it follows N(P,...,Ps) < d™ if
di#Q,Z‘:l,.. 58

4. Complete intersection. Let P = (Py,...,P) : C™ — C! realize a
set-theoretic complete intersection in the space C™ and let Zp = Z Y€
be the cycle of zeroes of the polynomlal mappmg P. Put d; = degP for
1=1,...,1

PROPOSITION 4.1. With the above assumption:

(1) Yoy pideg X; S dy- ... di,

(2) if polynomials Rl, .,R, satisfy the conditions R; | X; = 0 for
j=1,...r, then R -...- Rt € (Py,..., P).

Proof. Let L =(Ly,...,Ly_;) be an afﬁne mapping such that:

(a) #(X; 1 L7(0)) = dog X; for j = 1,

(b)ife € X;NL~1(0) thenaisa regular pomt of X and mult, (P, L) = p,
fory=1,...,s
We have

Z mult, (P, L) = Z Z mult, (P, L) = Z“i deg X ;.
a€(P,L)—-1(0) j=laeeX;NL~1(0) j=1

On the other hand 3 ¢ p1y-1(gymulta(P, L) < di - ... - d; by Bezout’s

Theorem (cf. [7]). Therefore property (1) follows.
To prove (2) it suffices by (2.2) to verify that

R ... R e (Py,...,P)Ocm.a
forae X;NL™'(0)and j=1,...,s
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Let ¢ € X; N L7(0). Then a is a regular point of X and there is a
neighbourhood 2, C C™ of a such that X N 2, = X, N £2,. Consequently
Rj| XN, =0 and we get R;-‘j € (P1,...,P)Ocm o by Lemma 1.1 applied
to the mapping (P, L) : C™ — C™ at the point a.

THEOREM 4.2. Let us suppose that P = (Py,...,P) : C™ — C! re-
alize o set-theoretic complete intersection in the space C™. Then for every
polynomial Q : C™ — C such that deg Q > 0 we have

N(Py,...,P,Q) < (deg Zp)(deg Q).

Proof. Let Zp = 37, p;X; and R € /(P,...,P,Q). Then
Q~'0)NX; C R7Y(0) N X; for j = 1,...r. By Theorem 3.2 there exist
polynomials A; : C™ — C such that

RAesX5)(dee @) — A.Q on X; forj=1,...,r.
By Proposition 4.1 we have

H(R(deng)(degQ) - A;QM € (Py,...,P).
Jj=1
Hence
R(deg Zp)(deg Q) € (P17 . ,I)l),
and the proof is complete.

From Proposition 4.1 and Theorem 4.2 we get

COROLLARY 4.3 (cf. [6], Thm 1.5). Let Py,..., P, be a sequence of
polynomials on C™ such that dimﬂé=1 P7'0)=m—12>0 and let d; =
deg P, >0 fori=1,...,5s+1. Then N(Py,...,Ps41) <dy ... dgyq.

Let us note that if Py, P, P; are polynomials of degrees dq,dy,ds > 0
then:

(ﬂ.) N(Pl,Pg) < d1d2,

(b) N(Pl,Pz,Pg,) < dldzdg.

Indeed (a) follows immediately from Corollary 4.3.

"To check (b) observe that we may assume that polynomials are irreduci-
blo (one checks easily that N(PJPJ,P,,P;) < N(P{,P;, P3) +
N(P', Py, Py)). If 1 € (Py, P,) then we have N(Py, Py, P;) = 1. In the case
Py = P;1(0) (b) is a simple consequence of (a). Finally, in the only
nou-trivial case is when the set P;(0) N P;1(0) is non-empty of dimension
m — 2, (b) follows from Corollary 4.3. |
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