Sur l'exposant d'une application analytique II

by

Arkadiusz PŁOSKI

Présenté par. S. ŁOJASIEWICZ le 17 décembre 1984

Summary. Let $f = (f_1, ..., f_n)$ be a holomorphic mapping having an isolated zero at the origin. Let $l_0(f)$ be the Łojasiewicz exponent of the mapping f at the point $0 \in \mathbb{C}^n$; then there exist integers N, a, b > 0 such that $l_0(f) = N + \frac{b}{a}$ with $0 < b < a < N^{n-1}$ or $l_0(f) = N$.

- 1. Nous allons considérer les applications analytiques $f = (f_1, ..., f_n)$ d'un voisinage de zéro de \mathbb{C}^n dans \mathbb{C}^n finies à zéro c'est-à-dire telles que f(0) = 0 et 0 est un point isolé de la fibre $f^{-1}(0)$. Si f est finie à zéro alors la multiplicité $m_0(f)$ et l'exposant $l_0(f)$ de f(cf, [6], definition 1.4) sont bien definis. Notons que $l_0(f)$ comme $m_0(f)$ ne dépend que de l'algèbre locale d'application f. L'exposant $l_0(f)$ peut être calculé à aide des arcs analytiques (cf. [4]). On a: $l_0(f) = \sup \left\{ \frac{\operatorname{ord}_t f(z(t))}{\operatorname{ord}_t z(t)} : z(t) \in \mathbb{C} \left\{ t \right\}^n z(0) = 0 \right\}$. De plus la borne supérieure dans la formule ci-dessus est atteinte (cf. [4], p. 49). L'exist ance de l'arc donnant le maximum se démontre aussi par la méthode presentée dans [6]. L'exposant $l_0(f)$ est un nombre rationnel ≥ 1 (cf. [4, 6]). Le but de cette note est de présenter un raffinement de ce résultat.
- (1.1) Théorème. Pour toute application analytique $f=(f_1,...,f_n)$ finie à zéro il existe des entiers N,a,b>0 tels que

$$l_0(f) = N + \frac{b}{a} \ avec \ 0 < b < a < N^{n-1} \ ou \ l_0(f) = N.$$

Le théorème découle directement des propositions suivantes.

(1.2) Proposition. Si $l_0(f) = \frac{p}{q}$ où p, q des entiers relativement premiers alors $p \le m_0(f)$.

(1.3) PROPOSITION (cf. [2]). Pour toute application analytique f finie à $0 \in \mathbb{C}^n$ on $a: m_0(f) \leq ([l_0(f)])^n$ où [] designe la partie entière.

Démonstration du théorème (1.1). Supposons que $l_0(f)$ n'est pas entier et notons $N = [l_0(f)]$. Nous pouvons alors écrire $l_0(f) = N + \frac{b}{a}$ où 0 < b < a sont des entiers relativement premiers. Les entiers aN + b, a sont aussi relativement premiers et nous avons d'après (1.2) et (1.3) $aN + b \le m_0(f) \le N^n$ ce qui évidemment entraı̂ne $a < N^{n-1}$.

La démonstration de (1.2) a été donnée dans [6]. Nous déduirons (1.3) des lemmes présentés ci-dessous.

(1.4) Lemme (suggéré par T. Winiarski). Soient $f=(f_1,...,f_n)$ une application analytique finie à zéro, $g=(g_1,...,g_n)$ une application analytique d'un voisinage de $0 \in \mathbb{C}^n$ dans \mathbb{C}^n telle que $ord_0(g-f)=\min_{i=1}^n (ord_0(g_i-f_i)) > l_0(f)$. Alors g est finie à zéro, $l_0(g)=l_0(f)$ et $m_0(g)=m_0(f)$.

Démonstration de (1.4). Il existe des constantes R, C, $C_1 > 0$ telles que $|f(z)| \ge C |z|^{l_0(f)}$ et $|g(z) - f(z)| \le C_1 |z|^{\operatorname{ord}_0(g-f)}$ pour $|z| \le R$. On a alors pour |z| assez petit $|g(z)| \ge |f(z)| - |g(z) - f(z)| \ge C |z|^{l_0(f)} - C_1 |z|^{\operatorname{ord}_0(g-f)} \ge C_2 |z|^{l_0(f)}$ avec $C_2 > 0$ car $l_0(f) > \operatorname{ord}_0(g-f)$. L'inégalité $|g(z)| \ge C_2 |z|^{l_0(f)}$ implique que g est finie à zéro et $l_0(g) \le l_0(f)$ d'où $\operatorname{ord}_0(f-g) > l_0(g)$. Par symétrie nous avons $l_0(f) \ge l_0(g)$ alors $l_0(f) = l_0(g)$. De la même manière on montre que $f^{-1}(0) \cap B_r = g^{-1}(0) \cap B_r = \{0\}$ et |g(z) - f(z)| < |f(z)| pour $z \in Fr(B_r)$ où $B_r = \{z \in C^n : |z| \le r\}$ est une boule suffisamment petite. L'égalitè $m_0(g) = m_0(f)$ découle du théorème de Rouché (cf. [9]).

(1.5) LEMME. Pour toute application polynomiale $g=(g_1,...,g_n)$ finie à zéro on a: $m_0(g) \leqslant \prod_{i=1}^n deg g_i$.

Démonstration de la proposition (1.3). Soit g_i le polynôme de Taylor de f_i tel que $\operatorname{ord}_0(g_i-f_i)>l_0(f)$, évidemment on a $\deg g_i\leqslant [l_0(f)]$ pour $i=1,\ldots,n$. Posons $g=(g_1,\ldots,g_n)$. D'après les lemmes (1.4) et (1.5) nous obtenons $m_0(f)=m_0(g)\leqslant \prod_{i=1}^n \deg g_i\leqslant ([l_0(f)])^n$.

REMARQUE. Il vient de la proposition (1.2) que pour tout entier $m \ge 1$ l'ensemble d'exposants $l_0(f)$ où f parcourt les applications analytiques finies

à zéro telles que $m_0(f) = m$ est un ensemble fini. Voilà l'évaluation exacte de $l_0(f)$ pour $m_0(f) \le 9$ (n quelconque):

$m_0(f)$	1	2	3	4	5	·6	7	8	9
$l_{0}\left(f ight)$	1	2	3	2, 4	3, 5	3, 4, 6	$3\frac{1}{2}$, 4, 5, 7	2, 4, 5, 6, 8	$3, 4\frac{1}{2}, 5, 6, 7, 9$

- 2. Soit Σ $h_{i_1...i_n}$ $z_1^{i_1}$... $z_n^{i_n}$ la série de Taylor du germe (h,0) d'une fonction holomorphe h. Posons supp $(h) = \{(i_1, ..., i_n) \in \mathbb{N}^n : h_{i_1...i_n} \neq 0\}$. Pour toute suite d'entiers positifs $d = (d_1, ..., d_n)$ notons $o_d(h) = \inf\{d_1 i_1 + ... + d_n i_n : (i_1, ..., i_n) \in \text{supp } h\}$, $\inf_d(h) = \text{la somme de tous les monômes } h_{i_1...i_n} z_1^{i_1} ... z_n^{i_n} \text{ satisfaisant}$ à la condition $d_1 i_1 + ... + d_n i_n = o_d(h)$. Si $f = (f_1, ..., f_n)$ est une application analytique alors posons $o_d(f) = \min_{i=1}^n (o_d(f_i))$, $\inf_d(f) = (\inf_d(f_1), ..., \inf_d(f_n))$. Evidemment pour d = (1, ..., 1) on a: $o_d = \text{ord}$, $\inf_d(f) = (\inf_d(f_1), ..., \inf_d(f_n))$.
- (2.1) PROPOSITION. Soit $f = (f_1, ..., f_n)$ une application analytique d'un voisinage de $0 \in \mathbb{C}^n$ dans \mathbb{C}^n telle que $(in_d f)^{-1}(0) = 0$ pour une suite d'entiers positifs $d = (d_1, ..., d_n)$. Alors f est finie à éro et $m_0(f) = \prod_{i=1}^n \frac{o_d(f_i)}{d_i}$.

La proposition (2.1) est une consequence facile de la proposition 2.1 de [7] (voir également [1], p. 155). Dans cette section nous démontrerons un analogue de (2.1) pour l'exposant $l_0(f)$.

(2.2) Proposition. Avec les hypothèses de (2.1) on a:

$$\frac{\max_{i=1}^{n} \left(o_d\left(f_i\right)\right)}{\max_{i=1}^{n} \left(d_i\right)} \leqslant l_0\left(f\right) \leqslant \frac{\max_{i=1}^{n} \left(o_d\left(f_i\right)\right)}{\min_{i=1}^{n} \left(d_i\right)}.$$

La démonstration de (2.2) s'appuie sur deux lemmes.

(2.3) Lemme. Si $f = (f_1, ..., f_n)$ et $h = (h_1, ..., h_n)$ sont des applications analytiques finies à zéro alors

$$\frac{l_0(f \circ h)}{l_0(h)} \leqslant l_0(f) \leqslant \frac{l_0(f \circ h)}{\operatorname{ord} h}.$$

Démonstration de (2.3). Il existe des constantes R, C, $C_1 > 0$ telles que $|f(h(z))| \ge C |z|^{l_0(f \circ h)}$ et $|h(z)| \le C_1 |z|^{\operatorname{ord}_0(h)}$ pour $|z| \le R$, d'où $|f(h(z))| \ge C_2 |h(z)|^{\frac{1}{\operatorname{ord}_h}}$ avec $C_2 > 0$ pour |z| assez petit. Mais h est surjective alors $|f(w)| \ge C_2 |w|^{\frac{l_0(f \circ h)}{\operatorname{ord}_h}}$ pour |w| assez petit ce qui entraı̂ne $l_0(f) \le \frac{l_0(f \circ h)}{\operatorname{ord}_h}$. L'inégalité $l_0(f \circ h) \le l_0(f) l_0(h)$ est évidente.

er a

eui

es

asi-

ue

rs

ur ec g

ue

où (f)

éro

que

ylor

юur ious

≥ 1

nies

(2.4) LEMME. Soit $f = (f_1, ..., f_n)$ une application analytique d'un voisinage de zéro de \mathbb{C}^n dans \mathbb{C}^n telle que $(\inf)^{-1}(0) = \{0\}$. Alors f est finie à zéro et $l_0(f) = \max_{i=1}^n (\operatorname{ord} f_i)$.

Démonstration de (2.4). Notons d'abord que pour toute application analitique finie à zéro $f=(f_1,...,f_n)$ on a $l_0(f)\geqslant \max_{i=1}^n (\operatorname{ord}_0 f_i)$. En effet on vériefie comme dans la preuve de (2.3) que pour toute fonction holomorphe g on a $l_0(f)\geqslant \frac{\operatorname{ord}(g\circ f)}{\operatorname{ord} g}$. En posant $g(w)=w_i$ pour i=1,...,n nous obtenons l'inégalité demandée. Supposons maintenant que $(\inf)^{-1}(0)=0$. Il suffit alors de vérifier que f est finie à zéro et que $l_0(f)\leqslant \max_{i=1}^n (\operatorname{ord} f_i)$. Considérons le cas où $\operatorname{ord} f_1=...=\operatorname{ord} f_n=k>1$. On a alors $|\inf(z)|\geqslant (\min\{|\inf(z')|:|z'|=1\})|z|^k$ pour $z\in \mathbb{C}^n$ et $\operatorname{ord}(f-\inf)>k=l_0(\inf)$. D'après (1.4) f est finie à zéro et $l_0(f)=k$. Dans le cas général posons $\overline{f}=(f_1^{p_1},...,f_n^{p_n})$ où p_1 ord $f_1=...=p_n$ ord $f_n=\operatorname{ord} f_1$... ord f_n . D'après le raisonnement précédent \overline{f} est finie à zéro et $l_0(\overline{f})=\operatorname{ord} f_1$... ord f_n ce qui entraîne que f est finie à zéro et $l_0(f)=\max_{i=1}^n (p_i)=\max_{i=1}^n (\operatorname{ord} f_i)$.

Démonstration de la proposition (2.2). Posons $h(z) = (z_1^{d_1}, ..., z_n^{d_n})$, on a alors ord $(f_i \circ h) = o_d(f_i)$ pour i = 1, ..., n et in $(f \circ h) = \operatorname{in}_d(f) \circ h$. En appliquant (2.4) à l'application $f \circ h$ nous obtenons $l_0(f \circ h) = \max_{i=1}^n (o_d(f_i))$. La proposition découle maintenant du lemme (2.3) car $l_0(h) = \max_{i=1}^n (d_i)$, ord $(h) = \min_{i=1}^n (d_i)$.

- (2.5) EXEMPLE. Calculons $m_0(f)$ et $l_0(f)$ pour l'application $f: \mathbb{C}^2 \to \mathbb{C}^2$ donnée par la formule $f(z_1, z_2) = (z_1^{a+1} + z_2^a, z_1^{N-b} z_2^b)$ où 0 < b < a < N. A cet effet posons d = (a, a+1), on a alors $o_d(f_1) = a(a+1)$, $o_d(f_2) = Na + b$ et inf = f. Evidemment $(\operatorname{in}_d f)^{-1}(0) = \{0\}$ alors d'après (2.1) on a $m_0(f) = \frac{a(a+1)(Na+b)}{a(a+1)} = Na+b$ et (2.2) implique $l_0(f) \leqslant \frac{\max(a(a+1), Na+b)}{\min(a, a+1)} = N + \frac{b}{a}$. D'autre part l'inégalité $l_0(f) \geqslant \frac{m_0(f)}{\operatorname{ord} f}$ (cf. [7], Proposition 1.3) donne $l_0(f) \geqslant N + \frac{b}{a}$ alors $l_0(f) = N + \frac{b}{a}$.
- (2.6) Example (cf. [3, 5]). Si le polynôme $P(z_1, z_2) = \sum_{\substack{i_1p_1+i_2p_2=p\\ i_1p_1+i_2p_2=p}} a_{i_1i_2} z_1^{i_1} z_2^{i_2}$ à singularité isolée (i.e. (grad $P)^{-1}$ (0) = {0}) n'est pas un monôme alors l_0 (grad P) = $\max\left(\frac{p}{p_1}, \frac{p}{p_2}\right) 1$. En effet l'evaluation l_0 (grad P) $\leq \max\left(\frac{p}{p_i}\right) 1$

est une consequence directe de (2.2). Pour montrer l'égalité il suffit de comparer $\operatorname{ord}_{t}\left(\operatorname{grad}P\left(z\left(t\right)\right)\right)$ et $\operatorname{ord}_{t}z\left(t\right)$ pour $z\left(t\right)=\left(c_{1}\ t^{p_{1}},\ c_{2}\ t^{p_{2}}\right)$ avec $(c_1, c_2) \in \mathbb{C}^2$ convenablement choisi.

Notons L_n ensemble d'exposants $l_0(f)$ où f parcourt les applications analytiques finis à $0 \in \mathbb{C}^n$. Le théorème (1.1) et l'exemple (2.5) montrent que $L_2 = \{1, 2, 3, 3\frac{1}{2}, 4, 4\frac{2}{3}, 4\frac{1}{2}, 4\frac{2}{3}, 5, \ldots\}.$

Question. Quelle est la condition necessaire et suffisante pour que le nombre rationnel $\frac{p}{q}$ appartienne à L_n pour n > 2?

INSTITUT DE MECANIQUE APPLIQUEE, POLYTECHNIQUE, AL. TYSIĄCLECIA PAŃSTWA POLSKIEGO,

(INSTYTUT MECHANIKI STOSOWANEJ, POLITECHNIKA ŚWIĘTOKRZYSKA)

OUVRAGES CITÉS

- [1] V. Y. Arnold, A. N. Varuchenko, S. M. Gusein-Zade, Osobennosti diferentsiruemykh otobrazhenii, Moscow, 1982.
- [2] J. D. Angelo, Real hypersurfaces, orders of contacts and applications, Annales of Math., **115** (1982), 615–637.
- [3] T. C. Kuo, Y-Ch. Lu, On analytic function germs of two complex variables, Topology, **16** (1977), 299-310.
- [4] M. Lejeune-Jalambert, B. Teissier, Cloture integral des idéaux et équisingularité, Centre de Mathématiques, École Polytechnique, 1974.
- [5] B. Lichtin, Estimation of Lojasiewicz exponents and Newton polygons, Investiones math., 64 (1981) 417-429.
- [6] A. Płoski, Une évaluation pour les sous-ensembles analytiques complexes, Bull. Pol. Ac.: Math., 31 (1983), 259-262.
 - [7] A. Płoski, Sur l'exposant d'une application analytique. I, ibid., (à paraître).
- [8] K. Rusek, T. Winiarski, Polynomial automorphisms of Cⁿ. Univer. Lag. Acta Math., 24 (1984), 143–149.
- [9] T. Winiarski, Total number of intersection of locally analytic sets, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1981, preprint No. 248.

А. Плоски, О показателе аналитического отображения

Пусть $l_0(f)$ — показатель Лоясевича конечнократного комплексного отображения пространства $\subset \mathbb{C}^n$. В работе доказывается, что $l_0(f)=N+\frac{b}{a}$, где $0 < b < a < N^{n-1}$ целые числа или $l_0(f) = N$ целое число.