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Bezout’s theorem for affine curves with one branch at infinity

ARKADIUSZ PLOSKI

Abstract. Let us assume that each of the two affine curves C, D CC? has one branch at infinity and
that C and D intersect in a finite number k of points counted with multiplicities. Put m = degC, n = deg D
and (m, n) = g.c.d. (mn, n).

Then k = 0<mod m "

mm " m )

L. In the paper [5] van der Kulk gave a simple proof of Jung’s Automorphism Theorem
(cf. [4]). Following his ideas we prove in this note a result which may be considered a version
of Bezout’s theorem. Let us recall some definitions. A polynomial automorphism of C2
or, briefly, an automorphism is a bijective polynomial mapping of C? onto C2 with a poly-
nomial inverse. The restriction of an automorphism to a line induces an embedding i.e. an
injective mapping from C to C? with nowhere vanishing derivative. It will be convenient
to regard C? as the projective plane P2 without the line at infinity L. For any affine curve
C = C? we denote by C the closure of Cin P2. In the study of automorphisms the following
notion arises naturally (cf. [2]):

Definition. The affine curve C is said to have one branch at infinity if its projective
closure C has only one point which is not in C2 and the analytic germ of C at this point
is irreducible.

It is easy to check that an affine curve which is the image of C under an embedding has
one branch at infinity, consequently the images of lines under an automorphism have
also this property.

Our main theorem is

THEOREM 1.1. Let us assume that each of the two affine curves C, D = C? has one branch
at infinity and that C and D intersect in a finite number k of points counted with multiplicities.
Put m = degC, n = degD and (m, n) = g.c.d. (m,n).
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Then

kEO(mod " or " )
(m,n)  (m,n)

In the proof (1.1) we use van der Kulk’s method: first we prove a purely local pro-
perty of the intersection multiplicity of germs of plane curves (cf. Proposition 3.1)
below and then we get our result via classical Bezout’s theorem. We shall present the
proof of (1.1) at the end of this note, now we state the

COROLLARY 1.2 (cf. [5]). Let the mapping z—(P(z), Q(z2)) be a polynomial automorphism.
Then of the two integers m = degP, n = degQ one divides the other.

Proof. The curves C = P~ 1(0) and D = Q™ 1(0) of degrees m and n are images of C
under the inverse of the automorphism z —» (P(z), Q(z)), moreover they intersect at exactly
one point with multiplicity 1. Hence the assumptions of (1.1) are fulfilled with k = 1 and

= 1 which proves the corollary.

=1 or
(m, n) (m, n)

From the above corollary one can easily get Jung’s Automorphism Theorem (for the
details see [5]). The Abhyankar Moh Embedding Theorem (cf. [2]) which serves the same
purpose is a deeper result and harder to prove.

we have

2. In this section we recall a classical formula for the intersection multiplicity of two
irreducible germs of curves. Let I' be an irreducible germ of a curve at 0 € C?, we choose
the coordinates x, y so that the tangent to I' at 0 € C? has the equation y = 0. Then by
the Weierstrass preparation theorem I has its defining ideal generated by the distinguished
polynomial

fx,y) =y'+ ,glaj(x)y”"' :

where a;(x) are convergent power series in x whose order is strictly greater then i. The
equation f(x, y) = O has a solution for y as a power series in xh:

pi
y= ) axP, p<pi<pi<..,
1<EN

where 0S N< +o0 and a; # 0 for all 1<i< N. If N = 0, then the sum is equal to zero
and f(x, ) = y. In the sequal we put p, = p and call (p,: 0<i< N) the sequence of
Puiseux exponents of I' with respect to the coordinates x, y. If N < + oo, we define aditio-
nally Py,, = +0o0 with usual conventions on the symbol +oo. Let us recall that
po = ord T (order of I') and that p, is equal to the intersection multiplicity of I' and its
tangent y = 0. In the theorem below we assume that the sum of an empty family is equal
to zero.

THEOREM 2.1 (cf. [1], [3]). Let I’ # A be irreducible germsat0e C 2 of curves with a com-
mon tangent y = 0. Let (p;: 0<i< N) (resp (¢;: 0<i< N,)) be the sequence of Puiseux
exponents of T’ (resp. of A) with respect to the coordinates x, y. Let us denote P; = g.c. d.
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(Pos ..., p) for 0Si< N and Q,=g.c.d. (g, ..., q;) for 0<i< N,. Then there exists an
integer s, 0 <s<min(N, N,) such that

(2.1.1) &=gi~for all 0<i<s.

Do 90

(2.1.2) The intersection multiplicity (I'-A) of germs T', A is equal to the minimum of two
numbers

21 (Picy=P)qi+Pyqesv1, Y, (Qici—0)pit+ Qpysy -
i= =3

The reader can find a proof of Theorem 2.1 in the book [3]. Examples of calculations
which lead to the above result are also presented in [1].

3. The proof of Theorem 1.1 is based on the

ProposITION 3.1. Let I', A, A be pairwise distinct irreducible germs of analytic curves
at a point of a two-dimensional complex manifold. Suppose A is smooth and put p = (I'-A),

q=(4-4), (p,q) =g.c.d(p, q). Then

Ir-4)= 0<mod P or —q—>
.9 (p,9)

Proof. We may assume without loss of generality that I', 4 are germs at 0 € C? and
that A is a germ of a line through the origin. If I, 4 have no common tangent then
I'-4) = ordI'-ord4 and ordI" = p or ord4 = ¢q. Thus it suffices to consider the case
where I', A have a common tangent A,. By a C-linear transformation, we can arrange
that A, has the equation y = 0. In the notation of 2.1 we have (I'*A) = p,, (4-A) = ¢,
fA+#A, and (I''4o) = py, (4-A)g = gq,. Therefore we have to check for i = 0, 1 the
congruences

D; qi
r-4) = 0 mod :
(a) 4 (mo ) (p.-,qi)>

If s =0, then by (2.1.2) we have (I'-4) = min(p,q,, Poq,) and (a) becomes evident.
Now we assume that s> 0. Then we get from (2.1.2) the congruence

(b) (I'-4) = 0(mod(P; or Q,)).

On the other hand, we have for 0<i<s

P q;
c P, = 0| mod > and Q, = O(mod )
© ( (P> 9 (pi, 9)
. . . P, 0 .
Indeed, it follows from (2.1.1), by induction on i, that we have — = =* for 0 < i<s.

Po 90
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P s o e .
The equality — = 2 and the equalities (2.1.1) imply that ¢,P, = p; Q, for 0<i<s.
) Po 9o
This implies (c). Now (a) is an immediate consequence of (b) and (c) since s> 0. This

concludes the proof of the proposition. We can now prove Theorem 1.1.

Proof of 1.1. If the curves C and D do not intersect at infinity then &k = mn and the
theorem is obvious. Let us assume that C and D have a common point at infinity (neces-
sarily one) and let I', 4, A be the germs of C, D, L at the point. Obviously (I'*A) = m
and (4-A) = n then by proposition (3.1) we obtain

(F-A)zO(mod e or " )

(m,m) ~ (m,n)

By classical Bezout’s theorem we have k = mn—(I'-4) and our result is established.

Acknowledgement. I thank Kamil Rusek for having called my attention to the interesting
paper by van der Kulk.
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