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EFFECTIVE NULLSTELLENSATZ FOR STRICTLY REGULAR
SEQUENCES

BY ADELINA FABIANO, ARKADIUSZ PLOSKI AND PIOTR TWORZEWSKI

Abstract. Sharp versions of the Nullsellensatz for a class of polynomial
sequences are given.

1. Main results. Let F,... ,F. : C" - C, 1 < k < n be a sequence of
nonconstant polynomials. Let d; = deg F; for1=1,... k.

DEFINITION 1.1. The sequence Fi,... , Fy is strictly regular (s.r.) if there
are linear forms Ly,... , Ly_g : C* — C such that the mapping

(Fl,... 7F}C,Ll,.,. ,Ln,k,):(C” — C"
is proper.
REMARKS 1.2.

(1) If k =1 then nonconstant Fj is an s.r. sequence.

(2) If kK =n then Fy,... ,F, is an s.r. sequence
if and only if (Fy,...,F,): C* — C" is a proper mapping.

(3) Let F* : C* — C be a homogeneous form of degree d; such that we have
F; = F} + (terms of degree < d;) for ¢ = 1,... k. Suppose that the
algebraic set (Fy,..., F¥)71(0) is of dimension n — k, then Fy,... , Fj
1s an s.r. sequence.

(4) If Fy,...,Fy is an s.r. sequence then (Fy,..., F)7'(0) is of pure di-
mension n — k. In particular the algebraic cycle of zeroes Z(p, . gy is
defined (see [7]).
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THEOREM 1.3. Let Fy,... ,Fy : C" — C be an s.r. sequence. If G : C* —
C is a nonconstant polynomial mapping such that G|(Fy,...,F,)"'(0) = 0,
then there is a p > 0 such that
GH=AF +... + Ap Fy,
k
with polynomials Ay, ..., Ax : C* — C such that deg(A4;F;) < (]] d;)(deg G)
i=1
fori=1,...,k
REMARKS 1.4.

(1) Theorem 1.3 is a generalization to the case of s.r. sequence of the main
result of [3].
(2) From the given formulation of the theorem it follows immediately that

k
1=1

THEOREM 1.5. Let Fy,... , F} : C" — C be an s.r. sequence.
If Fypq : C" = C is a polynomial of degree di1 > 0 such that
(Fl, . ,Fk_H)_l(O) = @, then
AlFy+ . 4+ A Fryq =1,
with polynomials Ay, ..., Agy1 : C* — C such that deg(A;F;) < dy- ... dgs
fori=1,... Jk+1
REMARKS 1.6.

(1) If degrees of polynomials in Theorem 1.5 are different than 2, then the
theorem follows from Kollar‘s theorem (see [5]).
(2) If k = n then [3] gives a better result.

2. Proofs. The proofs of Theorem 1.3 and Theorem 1.5 are based on the
following proposition.

PRrROPOSITION 2.1. (cf. [3], [6]) Suppose that H = (Hy,... ,Hy) : C" = C"
is a proper polynomial mapping of geometric degree u. Then for every G :
C™ — C of positive degree there exists a polynomial

Po(W,T) =T + PO W)T* L + ...+ PP (W),
in n + 1 variables (W, T) = (Wy,... ,W,,T) such that:

(1) Pg(Hy,... ,Hp,G) =0

(2) For every w € C* we denote by ¢V (w),... , ¢ (w) the sequence of all

points of F~1(0) counted with multiplicities. Then

o
Po(w,T) = [[(T = GV (w))).

J=1
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(3) weight(Pg) < (H d;)(deg G), if weight(W;) = deg H; = d; for
it=1,...,n and welght( ) =degG.

Now let Fy,..., Fj : C* — C be an s.r. sequence of polynomials. Let us fix
linear forms L1,... ,L,_; : C* — C such that the mapping

H = (F1,... ,Fk,Ll,... aLn—Ic) Ch = C.
is proper.
PROOF OF THEOREM 1.3. Let P(W,T) = Pg(W,T). From Prop. 2.1 (2)
and from the assumption G|(Fi,...,F;)~1(0) =0 it follows that
P(0, wgt1,... ,wy, T) = TH for every (wgi1,... ,wn) € C**. This means that
P(0,Wit1,... , Wy, T) = T*, and consequently P(W,T) = TH+ W, P (W, T)+
oo+ WP (W, T) with

weight (W, P; (W, T)) < weight P(W,T) Hd (degG) for j=1,... .k .
=1
Substitution F1,..., Fy, G for Wy, ..., Wy, T gives

G' = (=P\(F,L,G))F, + ...+ (=Px(F,L,G))Fy,

with
k
deg(—F;(F, L, G)F;) < weight(— (W, T)W;) < (][ di)(deg G),
1=1 .
and the proof is complete. O

ProoFr oF THEOREM 1.5. Let P(W,T) = Pg(W,T) and G = Fy,1. Since
P(H,G) =0 then we get

—(G* + PO(RYGF + .. + P-V(F)G) = PW(H).
This gives

(*) — Fy1Apr = PW(H)
We have P#){(w) = H 1 Fr1(¢9)(w)), consequently W0, wy, ... ,wg) # 0
in C** and we may assume

PW(0, wyir, ... ,wp) = —1 .
Then PUW(W) = W1 A1 (W) + ... + Wi Ag(W) — 1 with
weight(Wy Ax) < weight(PW) < dy -... - dj .

Substitution gives P (H) = Fy Ay (F)+.. .4+ FyAg(F)—1 with deg(F; A; (F)) <
di-...-dgyr, fore=1,... k. By (x) we get AyFy + ...+ Agy1Frqp1 = 1 with
deg(F;Ai(F)) <di-...-dgq1, fori=1,...  k+ 1. This ends the proof. d
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3. Examples. Let F' = (F},... | F,) : C* — C* be a polynomial map-
ping. One can compare properties of the mapping F with the condition that
Iy, ..., Fy is an s.r. sequence.

It is easy to see that if Fy,... Fj is an s.r. sequence then the mapping
F is surjective and has all fibres of pure dimension n — k. In the next exam-
ple we observe that this assumption with additional complete intersection of
components of F' is not enough for F,... , F; to be an s.r. sequence.

ExaMPLE 3.1. Consider polynomials:

F:C > (z,y,2) =z €C,
Fy:C > (z,y,2) = 2y’ +y e C.

It is easy to see that F, Fy is a complete intersection and every fibre of
F has dimension 1. We observe that Fy, F, is not an s.réequence. Let us
take a linear form L(z,y,z) = az + by + cz and suppose that the mapping
H = (Fy,F,L) is proper. Then obviously ¢ # 0 and we can assume ¢ = 1.
Taking the sequence h, = (v, —v, bv—av~1), we have |hy| = +00 (v — +00).
Observe that we obtain H(h,) = (¥71,0,0) = 0 (v — 4o00), and so (Fy, F») is
not an s.r. sequence.

Our next example says that an additional condition that all the fibres have
the same degree (with multiplicity) is too strong in this situation.

ExAMPLE 3.2. Consider polynomials:

Fl :(C3 B(xayaz) _>y€(ca
Fo:C 3 (1,y,2) = z+ 2%y e C.

It is easy see that Fy, Fy is an s.r. sequence since the mapping (F1, Fy, L)
1s a polynomial automorphism for L(z,y, z) = z. But deg F~1((0,0)) = 1 and
deg F~1((1,0)) = 2.
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