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SEMICONTINUITY OF THE  LOJASIEWICZ EXPONENT

by Arkadiusz P loski

Abstract. We prove that the  Lojasiewicz exponent l0(f) of a finite holo-
morphic germ f : (Cn, 0)→ (Cn, 0) is lower semicontinuous in any multipli-
city-constant deformation of f .

1. Introduction. Let C{z} denote the ring of convergent power series in
n variables z = (z1, . . . , zn). Any sequence of convergent power series h =
(h1, . . . , hp) ∈ C{z}p without constant term defines the germ of a holomorphic
mapping h : (Cn, 0) → (Cp, 0). We put ordh = inf

k
{ordhk}, where ordhk

denotes the order of vanishing of hk at 0 (by convention ord 0 = +∞). If
|z| =

n
max
j=1
|zj | for z = (z1, . . . , zn) ∈ Cn then ordh for h 6= 0 is the largest

α > 0 such that |h(z)| 6 c|z|α with a constant c > 0 for z ∈ Cn close to 0 ∈ Cn.
Let f = (f1, . . . , fn) ∈ C{z}n, f(0) = 0, define a finite holomorphic germ

f : (Cn, 0)→ (Cn, 0); i.e. such that f has an isolated zero at the origin 0 ∈ Cn

and let I(f) be the ideal of C{z} generated by f1, . . . , fn. Then I(f) is of finite
codimension in C{z} and the multiplicity m0(f) of f is by definition equal to
dimC

C{z}/I(f). There exist arbitrary small neighbourhoods U and V of 0 ∈ Cn

such that the mapping U 3 z → f(z) ∈ V is an m0(f)-sheeted branched
covering, see [4], Chapter 5, §2.

Another important characteristic of a finite germ f : (Cn, 0) → (Cn, 0)
introduced and studied by M. Lejeune-Jalabert and B. Teissier in the 1973–
1974 seminar at the Ecole Polytechnique (in a very general setting), see [3],
is the  Lojasiewicz exponent l0(f) defined to be the smallest θ > 0 such that
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there exist a neighbourhood U of 0 ∈ Cn and a constant c > 0 such that

|f(z)| > c|z|θ for all z ∈ U.

The  Lojasiewicz exponent can be calculated by means of analytic arcs (see [3],
§5 and [8], §2) φ(s) = (φ1(s), . . . , φn(s)) ∈ C{s}n, φ(0) = 0, φ(s) 6= 0 in C{s}n:

l0(f) = sup
φ

{
ord f ◦ φ

ordφ

}
.

The following lemma ([7], Corollary 1.4) will be useful for us.

Lemma 1.1. Let f : (Cn, 0)→ (Cn, 0) be a finite holomorphic germ. Then
l0(f) 6 m0(f) with equality if and only if rank

(
∂fi

∂zj
(0)
)

> n− 1.

Now, let h ∈ C{z}, h(0) = 0, be a convergent power series defining
an isolated singularity at 0 ∈ Cn, i.e., such that the gradient of h, ∇h =(
∂h
∂z1

, . . . , ∂h∂zn

)
: (Cn, 0) → (Cn, 0) is finite at 0 ∈ Cn. Then µ0 := m0(∇h)

is the Milnor number of the singularity h = 0. In [9], Teissier calculated
L0(h) := l0(∇h) in terms of polar invariants of the singularity and proved that
the  Lojasiewicz exponent L0(h) is lower semicontinuous in any µ-constant de-
formation of the singularity h = 0. He also showed that if we do not assume
µ= constant, then L0(h) is neither upper or lower semicontinuous, see [10].
The “jump phenomena” of the  Lojasiewicz exponent were rediscovered by some
authors, see [5]. The aim of this note is to prove that the  Lojasiewicz expo-
nent is lower semicontinuous in any multiplicity-constant deformation of the
finite holomorphic germ. The proof is based on the formula for the  Lojasiewicz
exponent given by the author in [8] (see also Lemma 3.3 in Section 3).

2. Result. Let f = (f1, . . . , fn) ∈ C{z}n, f(0) = 0, define a finite holo-
morphic germ. A sequence F = (F1, . . . , Fn) ∈ C{t, z}n of convergent power
series in k + n variables (t, z) = (t1, . . . , tk, z1, . . . , zn) is a deformation of
f if F (0, z) = f(z) in C{z} and F (t, 0) = 0 in C{t}. Then the sequence
(t, F (t, z)) ∈ C{t, z}k+n defines a holomorphic germ (Ck+n, 0) → (Ck+n, 0) of
multiplicity m0(f). Indeed, it is easy to check that the algebras C{z}/I(f) and
C{t,z}/I(t,F ) are C-isomorphic.

We put Ft = F (t, z) ∈ C{z}n for t ∈ Ck close to 0. Then Ft(0) = 0 and
m0(Ft) 6 m0(F0) = m0(f) for t ∈ Ck close to 0, see [13], chapter 2, §5. We say
that F is a multiplicity-constant deformation of the germ f : (Cn, 0)→ (Cn, 0)
if m0(Ft) = m0(F0) for t close to 0.

The main result of this note is
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Theorem 2.1. Let F ∈ C{t, z}n be a multiplicity-constant deformation of
the germ f : (Cn, 0)→ (Cn, 0). Then

l0(F0) 6 l0(Ft) for t ∈ Ck close to 0 ∈ Ck.

Moreover, if F is a one-parameter deformation (k = 1), then l0(Ft) is constant
for t 6= 0 close to 0 ∈ C.

The proof of the theorem is given in Section 4 of this note. The inequality
stated above may be strict:

Example 2.2. (see [5], §5).
Let F (t, z1, z2) = (tz1 + za1 + zb2, z

p
1 − z

q
2) ∈ C{t, z1, z2}2 be a one-parameter

deformation of f(z1, z2) = (za1 + zb2, z
p
1 − z

q
2). Assume that a, b, p, q > 1 are

integers such that GCD(p, q) = 1 and bp < q. Then m0(Ft) = bp for all t ∈ C,
i.e. F is a multiplicity-constant deformation. If t 6= 0 then ordFt = 1 and we
get l0(Ft) = m0(Ft) = bp by Lemma 1.1. Since ordF0 > 1, by the second part
of Lemma 1.1, we get that l0(F0) < m0(F0) = bp.

Note that C. Bivià-Ausina (see [2], Corollary 2.5) proved a result on the
semicontinuity of the  Lojasiewicz exponent which, however, does not imply
our Theorem 2.1.

One can also indicate the deformations for which the  Lojasiewicz exponent
is upper semicontinuous like multiplicity.

Proposition 2.3. Let F ∈ C{t, z}n be a deformation of f ∈ C{z}n such
that rank

(
∂Fi
∂zj

(t, 0)
)

> n− 1 for t ∈ Ck close to 0 ∈ Ck. Then

l0(Ft) 6 l0(F0) for t ∈ Ck close to 0.

Proof. By Lemma 1.1 we get l0(Ft) = m0(Ft) for t ∈ Ck close to 0 and
the proposition follows from the upper semicontinuity of the multiplicity.

Example 2.4. Let f(z) = (zm1 , z2, . . . , zn) with m > 1 and let F (t, z) =
f(z1 + t, z2, . . . , zn) − f(t, 0, . . . , 0) = ((z1 + t)m − tm, z2, . . . , zn) be a one-
parameter deformation of f . Then F (t, z) satisfies the assumption of Proposi-
tion 2.3. Using Lemma 1.1 we check that l0(Ft) = m0(Ft) = 1 for t 6= 0 and
l0(F0) = m0(F0) = m.

In the example above, the deformation of f is given by the translation of
coordinates. Even for such a deformation, the  Lojasiewicz exponent may be
not upper semicontinuous:

Example 2.5. Let f(z1, z2, z3) = (z2
1 , z

3
2 , z

3
3−z1z2) ∈ C{z1, z2, z3}3 and let

F (t, z1, z2, z3) = f(t+ z1, z2, z3)− f(t, 0, 0) = (2tz1 + z2
1 , z

3
2 ,−tz2 + z3

3 − z1z2).
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Then by Lemma 1.1 we get l0(Ft) = m0(Ft) = 9 for t 6= 0. On the other hand
m0(F0) = 18 and l0(F0) = 18

5 (see Example 3.5 of this note). The exponent
l0(F0) is attained on the arc φ(s) = (s9, s6, s5).

Remark 2.6. The case of µ-constant deformations of isolated hypersurface
singularities is much more subtle. Teissier’s conjecture that “µ-constant implies
the constancy of the  Lojasiewicz exponent” ([9], Question on p. 278) is still
open.

3. Characteristic polynomial and the  Lojasiewicz exponent. Let
f = (f1, . . . , fn) ∈ C{z}n be a sequence of convergent power series defining
a finite holomorphic germ f : (Cn, 0) → (Cn, 0). Then the extension C{z} ⊃
C{f} is a finite C{f}-module. For any h ∈ C{z} there is a unique irreducible
polynomial Qf,h = smh + c1(w)smh−1 + · · · + cmh

(w) ∈ C{w}[s] in n + 1
variables (w, s) = (w1, . . . , wn, s) such that Qf,h(f, h) = 0. It is called the
minimal polynomial of h relative to f . Its degree mf,h := degsQf,h divides
the multiplicity m(f); we put Pf,h = Qrf,h, where r = m(f)

mf,h
and call Pf,h

the characteristic polynomial of h relative to f . If h(0) = 0 then Qf,h and
consequently Pf,h is a distinguished polynomial.

Remark 3.1. Let L = C{z}(0) and K = C{f}(0) be fields of fractions of
the ring C{z} and C{f}, respectively. Then Qf,h(f, s) ∈ K[s] is the monic
minimal polynomial of h relative to the field extension L/K and Pf,h(f, s) is
the characteristic polynomial of h relative to L/K. For the various equivalent
definitions of the characteristic polynomial, see Zariski–Samuel [14], Chapter
II, §10.

The lemma below follows immediately from the Rückert–Weierstrass para-
metrization theorem (see [1], §31, (31.23))).

Lemma 3.2. Let P (w, s) = sm + a1(w)sm−1 + · · · + am(w) ∈ C{w}[s] be
a distinguished polynomial of degree m = m0(f) and let h ∈ C{z}, h(0) = 0.
Then the following two conditions are equivalent:

(i) P (w, s) is the characteristic polynomial of h relative to f ,
(ii) Let U and V be neighbourhoods of 0 ∈ Cn such that the mapping U 3

z → f(z) ∈ V is a m0(f)-sheeted branched covering and h = h(z) is
convergent in V . Then the set {(w, s) ∈ V × C : P (w, s) = 0} is the
image of U by the mapping U 3 z→ (f(z), h(z)) ∈ V ×C, provided that
U , V are small enough.

To study the  Lojasiewicz exponent l0(f), it is useful to consider the in-
equalities of the type

( L) |h(z)| 6 c|f(z)|θ near the origin 0 ∈ Cn.



107

The least upper bound of the set of all θ > 0 for which ( L) holds for some
constant c > 0 in a neighbourhood U ⊂ Cn of 0 will be denoted of (h) and
called the  Lojasiewicz exponent of h relative to f .

Lemma 3.3. Let Pf,h(w, s) = sm + a1(w)sm−1 + · · ·+ am(w) ∈ C{w, s} be
the characteristic polynomial of h ∈ C{z}, h 6= 0, relative to f . Let I = {i ∈
{1, . . . ,m} : ai 6= 0}. Then

of (h) = min
i∈I

{
1
i

ord ai

}
.

Proof. (after [8], proof of Theorem 2.3). Let U and V be neighbour-
hoods of 0 ∈ Cn such that the mapping U 3 z→ f(z) ∈ V is an m0(f)-sheeted
branched covering and h = h(z) converges in V . Let P (w, s) be the char-
acteristic polynomial of h relative to f . Then by Lemma 3.2, the inequality
|h(z)| 6 c|f(z)|θ, z ∈ U , is equivalent to the estimate

(∗) {(w, s) ∈ V × C : P (w, s) = 0} ⊂ {(w, s) ∈ V × C : |s| 6 |w|θ}
for U , V small enough.

Let Θ0 = min
i∈I

{
1
i

ord ai

}
. It is easy to check (see [6], Proposition 2.2) that

Θ0 is the largest number θ > 0 for which (∗) holds. This proves the lemma.

Lemma 3.4. l0(f) =
(

n
min
i=1
{of (zi)}

)−1

.

Proof. Obvious.

Example 3.5. Let us get back to Example 2.5. Let f = (f1, f2, f3) =
(z2

1 , z
3
2 , z

3
3 − z1z2). There is m0(f) = 18. The characteristic polynomials of z1

and z2 are (s21−w1)9 and (s32−w2)6 respectively; hence of (z1) = 1
2 , of (z2) = 1

3 .
To calculate of (z3), let us observe that

P (w, s) = (s3 − w3)6 − w3
1w

2
2

is the characteristic polynomial of h = z3 relative to f . Indeed, P (f, z3) = 0 in
C{z} and P (w, s) is irreducible: if u is a variable, then P (u, u, 0, s) = s18− u5

is irreducible, whence P (w, s) is irreducible.
Write P (w, s)=s18−6w3s

15+· · ·+(w6
3−w3

1w
2
2). Using Lemma 3.3, we check

that of (z3) = ord(w6
3−w3

1w
2
2)

18 = 5
18 . Then we get l0(f) =

(
min{1

2 ,
1
3 ,

5
18}
)−1 = 18

5 .

Lemma 3.6. Let F = F (t, z) ∈ C{t, z}n be a multiplicity-constant defor-
mation of a finite germ f : (Cn, 0)→ (Cn, 0) and let h ∈ C{z}, h(0) = 0. Let
Ph(t, w, s) = sm+a1(t, w)sm−1+· · ·+am(t, w) ∈ C{t, w}[s] be the characteristic
polynomial of h relative to (t, F (t, z)). Then for t ∈ Ck close enough to 0 ∈ Ck
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the polynomial Ph(t, w, s) = sm + a1(t, w)sm−1 + · · · + am(t, w) ∈ C{w}[s] is
the characteristic polynomial of h relative to F (t, z) ∈ C{z}n.

Proof. There exist arbitrary small neighbourhoods U and V of 0 ∈ Cn

andW of 0 ∈ Ck such that the mappingW×U 3 (t, z)→ (t, F (t, z)) ∈W×V is
m0(f)-sheeted branched covering. Since F = F (t, z) is a multiplicity-constant
deformation, also the mappings U 3 z → F (t, z) ∈ V for t ∈ W are m0(f)-
sheeted branched coverings. Fix h = h(z) ∈ C{z}, h(0) = 0. Shrinking the
neighbourhoods W × U and W × V , by Lemma 3.2 we get that the image of
W ×U under the mapping W ×U 3 (t, z)→ (t, F (t, z), h(z)) ∈W ×V ×C has
the equation Ph(t, w, s) = 0 in W×V ×C. Therefore, the image of U under the
mapping U 3 z → (F (t, z), h(z)) ∈ V × C has the equation Ph(t, w, s) = 0 in
V ×C. Using again Lemma 3.2, we conclude that Ph(t, w, s) is the characteristic
polynomial of h relative to F (t, z).

4. Proof of the main result. Let us begin with

Theorem 4.1. Let F = F (t, z) ∈ C{t, z}n be a multiplicity-constant de-
formation of a finite germ f : (Cn, 0)→ (Cn, 0). Let h ∈ C{z}, h 6= 0. Then

oFt(h) 6 oF0(h) for t ∈ Ck close to 0 ∈ Ck.

Moreover, if F is a one-parameter deformation (k = 1), then oFt(h) is constant
for t 6= 0 close to 0 ∈ C.

Proof. Let Ph(t, w, s) = sm + a1(t, w)sm−1 + · · · + am(t, w) ∈ C{t, w}[s]
be the characteristic polynomial of h relative to (t, F (t, z)) ∈ C{t, z}k+n. Then
by Lemma 3.6 for t ∈ Ck close to 0 ∈ Ck, Ph(t, w, s) = sm + a1(t, w)sm−1 +
· · · + am(t, w) ∈ C{w}[s] is the characteristic polynomial of h relative to Ft.

By Lemma 3.3, oFt(h) = inf
i

{
ord ai(t, w)

i

}
6 inf

i

{
ord ai(0, w)

i

}
= oF0(h) for

t ∈ Ck close to 0 ∈ Ck, since ord ai(t, w) 6 ord ai(0, w) if |t| is small. If k = 1,
then ord ai(t, w) ≡ const for t 6= 0 close to 0 ∈ C and oFt(h) = const.

Proof of Theorem 2.1. Use Theorem 4.1 and Lemma 3.4.

5.  Lojasiewicz exponent and the Newton polygon. Let P (w, s) =
sm + a1(w)sm−1 + · · · + am(w) ∈ C{w, s} be a distinguished polynomial in
variables (w, s) = (w1, . . . , wn, s). Put a0(w) = 1 and I = {i : ai 6= 0}. The
Newton polygon N (P ) of P is defined to be

N (P ) = convex
⋃
i∈I

(
(ord ai,m− i) + R2

+

)
, where R+ = {a ∈ R : a > 0}.
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Then N (P ) intersects the vertical axis at point (0,m) and the horizontal axis

at point (ord am, 0) provided that am 6= 0. Note that θ(P ) := inf
i

{
ord ai
i

}
is

equal to the slope of the first side of the Newton polygon N (P ), see [12].
Let f : (Cn, 0) → (Cn, 0) be a finite holomorphic germ and let h ∈ C{z},

h(0) = 0, h 6= 0 in C{z}. We put

N (f, h) = σ(N (Pf,h)),

where σ is the symmetry of R2
+ given by σ(α, β) = (β, α), and call N (f, h) the

Newton polygon of h relative to f .
From the proof of Theorem 4.1 there follows the semicontinuity of the

Newton polygon in Teissier’s sense, see [11] and [9].

Theorem 5.1. Let F = F (t, z) ∈ C{t, z}n be a multiplicity-constant de-
formation of f . Then

N (Ft, h) ⊂ N (F0, h) for t ∈ Ck close to 0.

If k = 1 then N (Ft.h) does not depend on t provided that t 6= 0 is close to
0 ∈ C.

Observe thatN (f, h) intersects the horizontal axis at point (m0(f), 0). The
intersection of the last edge (with vertex at (m0(f), 0)) of N (f, h) is equal to

1
of (h) . We will elsewhere prove that N (f, h) is identical to the Newton polygon
of the pair of ideals I(f), I(h) = (h)C{z} introduced by Teissier in [10]. In the
notation of [3], Complément 2 we have N (f, h) = NI(f)(h).
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