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Summary.” We give a criterion of irreducibility for polynomials of n > 2 variables and
show how to ensure the connectedness of zeros of a polynomial of two variables. Using
Bertini’s Theorem we prove that for any polynomial f there is an irreducible polynomial

fo such that f € C[f).

1. Introduction. Let f = f(x) be a nonconstant polynomial in n
complex variables ¢ = (T1,...,25). Write f = ZZ;O fr where f; is a
homogeneous polynomial of degree k. We say that f has no singularities at
infinity if the system of homogeneous equations

Ofm _Ofm B
Bz T g, = Im-1=0

has no solutions in C* — {0}.

THEOREM 1. Let f be a polynomial in n variables which has no stngu-
larities at infinity. Ifn > 2, then f is irreducible. Ifn =2, then f is nearly
trreducible, i.e. any two nonconstant polynomial Jactors of f have a common
“zero in C2?,

The proof of Theorem 1 is given in Section 2. Recall here that every

nearly irreducible polynomial has connected its zero-set, but need not be
irreducible (cf. [1]).

REMARK. If f = f(z,y) is nearly irreducible and grad f = (gﬁ, %5) #0
on f(z,y) = 0 then f is irreducible (cf. [6], Corollary).
Let us assume that P15--.3Pn > 0 are integers. A polynomial f will be
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called (py,. .. ,pn)-polynomial if
foael 4ot @zl + ) CiiaT T G O

where the summation is taken over all sequences (%1, .. ,%n) such that 7, /m+
oot in/pn < L '

Any polynomial of the form S, Pi(x;) with nonconstant Pi(z;) is a
(deg P1,...,deg Pp )-polynomial. The generalized difference polynomials de-
fined in [1] are (p1,p2)-polynomials. The second part of the following corol-
lary is due to [1, 6}.

COROLLARY to Theorem 1. If n > 2 then any (p1,--- , Pn)-polynomial s
irreducible. Any (p1,p2)-polynomial is nearly irreducible.

Proof. Let f be a (p1,--- ,Pn)-polynomial. Take p = p1...pn and .
put F(@1,e-r2n) = f(&/P ..., 28/P"). Then fz1,...,20) =@zl +... +
anz?+ (terms of degree < p), so by Theorem 1 the polynomial f is irre-

ducible if n > 2 and nearly irreducible if n = 2. Obviously the same is true
for f. '

REMARK. Any (p1,p2)-polynomial has at most GCD(p1,p2) factors.
In particular, if p1,p; are relatively prime than any (pi, p: )-polynomial is

irreducible (cf. [3]).

Let f = f(z,y) =2 ca,pr*y? be a polynomial of two variables. Recall
that the Newton polygon N(f) of f is the convex hull of the set {(0,0)}U
{(a,8) € N? : ¢op # 0}. We denote by ON(f) the set of all segments of
the boundary of N(f) which do not lie on the axes a = 0, 3 = 0. With any
S € ON(f) we associate a polynomial fs(z,y) = Z(a,ﬁ)es ca,gm"‘yﬁ. We
say that f is non-degenerate if for any S € ON(f) the system of equations
%If = %f?s — 0 has no solution in (C* — {0}) X (C* — {0}). If for every
S € ON(f) the set SN {(a,f) € N2 : cq g 7 0} contains only the ends of §
then f is non-degenerate. '

THEOREM 2. Let f = f(z,y) be a non-degenerate polynomial of two
variables. Suppose that:
1) N(f) intersects the azes o = 0 and B = 0 at points different from

(0,0).
2) every segment S € ON(f) has a negative slope, i.e. S lies on the line

Qt f = v wih g7 0.

T i

Proof of Theorem 2is given in Section 3. Theorem 2 is a gen-

eralization of the result of m Imdeed, if f= f(I ,U) 15 a (p,q)-polynomial
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and § is the segment joining the points (p,0) and (0,¢) then N(f) = {S}
and fs(z,y) = zP+yP, therefore the assumptions of Theorem 2 are satisfied.

A nonconstant polynomial f will be called primitive if the polynomials
f — c are irreducible for all but finite number of ¢ € C™. Let ¢ be a variable.
From Noether’s Theorem (cf. [7] p. 71) it follows easily that f = f(z) is
primitive if and only if the polynomial f(z) — t is irreducible in C(t)[z]
where m is the algebraic closure of the field C(t). Moreover, for any
nonconstant polynomial there are two possibilities: f is primitive or f — ¢ is
reducible for all ¢ € C. In particular any irreducible polynomial is primitive.
The theorem presented below is the n-dimensional generalization of a result
proved by ([4], p. 100).

THEOREM 3. For any polynomial f = f(x) there exists a primitive poly-
nomial fo = fo(x) and a polynomial of one variable P = P(t) such that

f = P(f).

Proof of Theorem 3 based on Bertini’s theorem is given in Sec-
tion 4 of this paper. Note that the polynomial fy in Theorem 3 can be
chosen to be irreducible (replace fo by fo — ¢ and P(t) by P(t + ¢)).

2. Proof of Theorem 1. The following lenima is well known and easy
to prove by using the resultant

LEMMA 1. Any two homogeneous polynomials of n > 2 variables have a
common zero in C™ — {0}.

Let n > 2. Suppose that the polynomial f of n variables has no singu-
larities at infinity. We have to show that f is irreducible. To get the con-
tradiction suppose that f = gh with nonconstant polynomials g, k. Write

f= ot fmat .o, g=gt @t h=hithi+...
where fr,..., gk,..., by, ... are homogeneous polynomials.

The equality f = gh.implies
(1) fm = gihu,
(2) fm-1=grhio1 + grahy .

Differentiating (1) yields

Ofm O I )

(3) L=—g—kht~l~g Oh, fori=1,...,n.

é)x,- 812,‘ k(?a:i

]gy Lemma 1 there is an @ € C" —{0} such that gx(a) = hi(a) = 0, therefore
aLx’;‘(a) =...= %%(a) = fm-1(a) = 0 by (3) and (2), which contradicts
the assumption of the Theorem 1.
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Let n = 2. Suppose that f = f(z;,2,) has no singularities at infinity.
Let g, h be two nonconstant polynomial factors of f. We have to show that
the equations ¢ = 0, A = 0 have a common solution in C%. Let us write

f=ghP and

f=foatfmat..., 9=gc+ga1+...,
h=h1+hl_1+..., P=PFP,+P,_;+...

with homogeneous fm, gk, b1, Ps,. .. It is sufficient to show that the homo-
geneous equations g = 0, iy = 0 have no solutions in C% — {(0,0)}. In
fact, if gi(z1,72) = hi(z1,22) = 0 implies z; = z5 = 0, then the system
g(z1,72) = h(z1,72) = 0 has a solution in C? (we apply Lemma. 1 to the
homogenizations of polynomials g, h).

Now, let @ = (a;,a;) € C? be such that gi(a) = hi(a) = 0. We will
show that a = (0,0). From f = ghP we get

(4) fm = gt Ps
(5) fm-1 = ge—1hiPs + gihi—1 Ps + gchi Ps—y
Differentiating (4) gives
afm agk 8h 8P
= —h P h
(6) 9z, ~ 2z, "Dt 5, ng+8 grh
From (5) and (6) we get 3 Un, Fo(a) = %{C’;‘( ) = fm-1(a) = 0, which implies

a = 0 because f has no smgulamtxes at infinity.

3. Proof of Theorem 2. We follow the ideas of [1]. Let C((z~1))*
be the field of Puiseux series of the form y(z) = ez + a;2™ + ... where
a,ai,... € C—{0} and r > r; > ... is a decreasing sequence of rational
numbers with a common denominator. We put degy(z) = r, y*(z) = az”
and use the convention: deg0 = —co. The field C((z~!))* is an algebraically
closed extension of C(z) and deg is an extension of the degree defined in
C(z) (cf. [5] and (8] where the field C((z))* isomorphic to C((z~1))* is
considered). The set of elements of C((z~1))* of non- positive degree is a
domain C[[z71]]*. If y(z) € C[[z™]]*, the coefficient of z° in y(z) will be
designated as y(o0o). Obviously y(oo0) = 0 if and only if degy(z) < 0. ,

Now we use the Implicit Function Theorem for Puiseux Series (cf. [5],
p. 102). Let F(z,Y) € C[[z7!]]*[Y] be a polynomial in one variable Y. If
a € C is a simple root of the polynomial F(co,Y) € C[Y] then there exists
unique Y (z) € C[[z7}]]* such that F(z,Y(z)) = 0 and Y (o0) = a.

The Nowton method of detormmm the soltions of [z o) = D

C((z™"))* and the Implicit Function Theorem (IFT) give

LEMMA 2. Let f(z,y) € C[z,y], deg f(z,0) > 0 and y(z) € C((z1))*. If
f(z,y(z)) = 0 then there is a segment S € ON(f) such that fs(z,y*(z)) = 0.
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If %%(x,y"‘(:v)) # 0 then the solution y(z) of the equation flz,y) =0 1s
uniquely determined by y*(z).

Proof. Let f(z,y) = Y capz®y®, A = {ca, € N? i cap # 0}. The
classical reasoning (cf. [8] p. 98) shows that there is a line with equation
a+ pB =v (u = degy(z)) such that

(i) if (o, 8) € A then a + pB < v,

(i) the set Ao = {(a,8) € N? : @ + pf = v} contains at least two
points,

(iii) E(a,,@)er Co,pz(y* (2))? = 0.

Let v = deg f(z,0). Then (0,1) € A and v < v > 0 by (i). Therefore
a+ pf = v is a supporting line of the convex set N(f), different from axes
@ =0, 8 = 0. Consequently, there is a segment S € ON(f) such that
SNA=A4. Weget fs(z,y"(z)) = 0 by (iii).

To check the second part of Lemma 2 let y(z) = az* + ..., Y(z) =
z7#y(z). We have f(z,z#Y) = 2*F(z,Y) where F(z,Y) e C[[z7]]*[Y]. It
is easy to see that Y'(co) = a is a simple root of F(c0,Y) = fs(1,Y) whence
by IFT the Y (z) and consequently y(z) = Y (z) are uniquely determined.

On account of Lemma 2 let us note that if S lies on the line o +uB =v
then any solution of fs(z,y) = 0 is of the form az* with a € C, whence
degy(z) = degy™(z) = w. If fis non-degenerate, then %fyi(x,aa:“) # 0.

LEMMA 3. Let f = f(z,y) be a polynomial of two variables satisfying the
assumptions of Theorem 2. Then

(+) fev)=e][(y-w@) ecC inc(=™)[y)

with degyi(z) > 0 fori =1,...,m. Moreover, if yi(z) # yj(z) then yf (z) #
Ys (z).

Proof. From assumptions on N(f) it follows that
(1) N(f) intersects the axis a = 0 at point (0,m) = (0,deg, f)
(2)if $,T € ON(f) and S # T then the slopes of S and T are different.
We can write (x) by (1), because the field C((z71))* is algebraically
closed. The slopes of the segments § € 9N (f) are negative, therefore
degyi(z) > 0 by the first part of Lemma 2. Suppose that yi(z) # y;(z)
and let §,T € IN(f) be such that fs(z,yf(z)) = 0, fT(x,yJ?L(x)) =0.If
S # T then yf(:v) # yf(:z:) since deg y:r(:c) # deg yf(z) by (2). f § =.T
then yf (z) # y;"(:v) by the second part of Lemma 2, for f is non-degenerate.
To prove Theorem 2 let us consider two polynomial nonconstant factors
9(z,y), h(z,y) of f(z,y). With the notation of Lemma 3 we write g(z,y) =
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bHieI(y"yi(x))) h(xay) = CHjeJ(y’yj(x))’ b,ce C— {0} Let R(:E) =Yy
resultant of g(z,y), h(z,y). The system of equations g(z,y) = 0, h(z,y) = 0,
has a solution in C? if and only if R(z) = 0 or deg R(z) > 0. Assume
R(z) # 0, hence we get R(z) = const [[(yi(z) — y;(z)) and by lemma 2

deg R(z) = ) deg(yi(z) — y;(z)) = ) max(deg yi(z),deg y;(z)) > 0,

since deg(yi(z) — y;(2)) = max(deg(yi(2),y;(2)) if v (z) # v] ().

4. Proof of Theorem 3. The following Lemma is due to Gordan
(cf. [2] and [5] p. 9-10 for the proof).

LEMMA 4. Suppose that the polynomials ¢ = g(x) and h = h(zx) are
algebraically dependent. Then there exists a polynomial t(x) such that
g9(z), k(=) € Clt(z)).

To prove Theorem 3 it is sufficient to check that for any f € C[z] which
is not primitive there is a polynomial f; € C[z] such that f € C[f;] and
deg fi < degf. Let f = f(x) be a nonconstant polynomial which is not
primitive and let ¢ be a variable. It is easy to see that the polynomial
f(z) —t is irreducible in C(t)[z]. By Bertini’s Theorem (cf. [7], p. 79) there
are polynomials g = g(z), h = h(x) such that

(1) f(2)—t = ao(t)g(2)? +a1(D)g(=)PTh(=) + ...+ ap(t)h(x)? in Clt,a]
and

(2) max(deg g,degh) < deg f.

From (1) we get

(3) £(2) = a0 (0)g(=)? + a1(0)g(@)P~1h(x) + .. + a,(0)h(e)’

(4) =1 = ah(0)g(x)? + a4 (0)g(=)P~ h(2) + ... + L (O)h(e)?

By (4) the polynomials ¢g(x), h(x) are algebraically dependent. There-
fore by Gordan’s Lemma, there is a polynomial fo = fo(x) such that

(5) g(2), (=) € Clfo(=)]

Obviously deg fo < degg, deg h whence by (2): deg fo < deg f. From
(5) and (3) we get f € C[fo)-
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