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Newton polygons and the Lojasiewicz exponent
of a holomorphic mapping of C?

by ArkaDpIusz Proski (Kielce)

Zdzislaw Opial in memoriam

Abstract. Let (f, g): (C?, 0)— (C?, 0)'be a germ of a holomorphic mapping. We give an
estimate of the Lojasiewicz exponent

lo(f, 9) = inf{@ > 0: max{[fz)}, lg(2)l} > Clz|® for zeC? near 0}

in terms of the Newton polygons of / and g.

1. Estimation of the Lojasiewicz exponent. For any convergent power
series f(X, Y)=) C, X?Y?eC{X, Y}, we use ordf, resp. inf, to denote the
order, resp. the initial form of f We call f convenient if f(0,0)=0 and
f(X,0)f(0, Y)#0in C{X, Y}. For any convenient f, we denote by 9, the set
of all segments of the Newton polygon (cf. [1] and [10] for the detailed
description of the Newton polygon). If Se 9, then we let in(f, §) = the sum of
all monomials C, ,X?Y? such that (p, g)eS. For any segment S in the plane
(p, 9), we denote by S,, S, the projections of S on the axes, and by |S,], |5,
their lengths. Moreover, we put ||S| = min{|S,|,|S,]} and [S, T] = min
{S. 1T, 1, IS,| | Ty |} for two segments S, T. Any pair f, g of power series without
constant term induces a germ of a holomorphic mapping (f, g): C* — C? which
we denote briefly by (f, g). '

DerFINITION 1.1. The germ (f, g) determined by convenient power series
f, g is non-degenerate if for Se, and TeN, one has the following:

(a) either S and T are not parallel, ie., |S,||T,|#S,| |T,|, or
(b) the segments S and T are parallel and the system of equations
in(f, SYX, Y) =0, in(g, T)(X, Y) =0 has no solutions in (C\{0}) x (C\{0}).

One can check that the nondegeneracy condition is generic in the sense of
Kouchnirenko (cf. [4]). For any germ (f, g): C?> — C?, we define the multi-
plicity: my(f, g) = C-codimension of the ideal generated by f, g in C{X, Y},
and the Lojasiewicz exponent: [,(f, g) = the greatest lower bound of the set of
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all ® > 0 which satisfy the condition: there exist positive constants C, R such
that max{|f(x, y)|, lg(x, y)I} = C(max{|x|, |y|})® for all (x, y)eC? such that
max{|x|, [y]} < R (cf. [2], [6], [8]). If the germ (f, g) has an isolated zero at
0e C?, then both my(f, g) and [,(f, g) are finite.

Let us recall the following well-known resuit.

THEOREM 1.2. Suppose that f, ge C{X, Y} are convenient. Then m(f, g) =
Y. Y [S, T1, the equality holding if the germ (f, g) is non-degenerate.
SeNy TeNg

For the sake of completeness we give the proof of Theorem 1.2 in Sec-
tion 2.

The main result of this note is

THEOREM 1.3. Suppose that f, geC{X, Y} are convenient. Then

1 1
lo(f, g) = max {max{l—ls—" Y. S, ’I‘]}, max {msz (S, T]}},

SeNy TeN, TeNy €Ny

equality holding if the germ (f, g) is non-degenerate.

The proof of Theorem 1.3 will be given in Section 3. Note here that Lichtin
in [7] gave an estimation of [,(6h/0X, 0h/dY) in terms of the Newton polygon
of the series he C{X, Y} satisfying a non-degeneracy condition. Theorem 1.3
and Lichtin’s result are independent. If 1, =N = N then the right-hand side
of the inequality in Theorem 1.2 equals the double area between the polygon
and the two axes. In this case, Theorem 1.3 has also a simple geometrical
meaning.

LEMMA 1.4. Suppose that R, =N, =N and let (m, 0) and (0, n) be the
points of M which lie on the axes. Then the right-hand side of inequality (1.3) is
tequal to max(m, n).

Proof. We have to check that max {(1/||S])).[S, T]} = max(m, n) ().
Sent

denotes the summation over all Te%). Obviously, > |T,[=m, ) |T,| =n;
hence ) [S, T1<IS,In, Y.[S, T)<IS,m and we get (1/[SW) Y.[S, T]
< max(m, n) for any Se. Let A, BeJt be such that [4,|/|4,] <|S,l/IS,|
< |B,|/|B,| for any Se®. We have then (1/[Al)).[4, T] = (4,l/|Al)n,
(1/I1B1)Y.[B, T1 = (IB,|/|Bl)m and the lemma follows since

max((|A4;/ll 4l)n, (B,l/||Bl)m) > max(m, n).

2. Puiseux expansions. For any Puiseux series Y(X) = aX*+a'X* +...

eC{X}*= ) C{X'*} (x<a’ <...rational numbers, a, a',...€ C\{0}) we put
k>1

ordY(X) =«, in Y(X)=aX* Let f(X, Y)eC{X,Y}. The solution of

fX,Y)=0 in C{X}* is a Puiseux series Y(X)eC{X}* such that

f(X,Y(X))=0 in C{X}*. The smallest integer m such that
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ImfloY™X, Y(X)) # 0in C{X}* is called the multiplicity of the solution Y (X).
In what follows the solutions are always counted with multiplicities. We have the
following classical result.

THeOREM 2.1 (Newton-Puiseux, see [1], [10]). Let f(X, Y)eC{X, Y} be
a convenient power series.
I. The equation f(X, Y) =0 has ), |S,| = ordf (0, Y) solutions in C{X}*.

Sedy

For each Se M, there correspond |S,| solutions of order |S,|/|S,|. Let ac C\{0}

and let a be a rational number. Then in Y(X) = aX® for a solution corresponding
to S if and only if in(f, SYX, aX®)=0 in C{X}*

II. The equation f(X,Y)=0 has ) |S,|=ordf(X, 0) «solutions in
SeN

f
C{Y}*. To each SeN, there correspond |S,| solutions of order |S,|/|S,|. Let
beC\{0} and let B be a rational number. Then inX (Y) = bY?® for a solution
X(Y)eC{Y}* corresponding to S if and only if in(f, SYbY?, Y) =0 in C{Y}*.

The Newton polygons of the power series f(X, Y) and f(Y, X) are
symmetrical with respect to the diagonal p = g, therefore, part II of the
theorem follows from part I. As an application of Theorem 2.1 we get
a characterization of the non-degeneracy condition given in Section 1.

LEMMA 22. Let f,ge C{X, Y} be convenient power series. The following
three conditions are equivalent:

(i) The germ (f, g): (C?,0) = (C?, 0) is non-degenerate.

(i) For every solution Y(X)eC{X}* of f(X, Y) =0 and every solution
YX)eC{X}* of g(X,Y)=0 one has ord(Y (X)— ¥(X)) = min{ord Y(X),
ord Y(X)}.

(iii) For every solution X(Y)eC{Y}* of f(X, Y)=0 and every solution
X(Y)eC{Y}* of g(X,Y)=0 one has ord (X(Y)—X(Y))=min{ordX(Y),
ord X(Y)}.

Proof. It is easy to see that ord(Y(X)—Y(X))= min{ordY(X),
ord ¥Y(X)} if and only if inY(X) # inY(X). Thus the equivalence (i)<>(ii)
follows from part I of the Newton-Puiseux Theorem and the definition of the
non-degeneracy condition. Analogously, we check (i)<> (in).

The proof of Theorem 1.2 uses Theorem 2.1 and the proposition given
below.

PROPOSITION 2.3 (Zeuten’s Rule). Let f (X, Y), g(X, Y)eC{X, Y} be such
that £(0,0)=g(0,0) =0 and f(0, Y)g(0, Y)# 0 in C{Y}. Let (Y; (X)), resp.
(Y; (X)), be the sequence of all solutions in C{X}* (counted with multiplicities) of
f(X, Y)=0, resp. g(X, Y)=0. Then my(f, g) = )3 ord(Y,(X)—Y(X)).

i
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Proof. By the Weierstrass Preparation Theorem we may assume that f,
g are Y-distinguished polynomials. Let R, ,(X) be the Y-resultant of f, g. One
can prove directly that my(f, g) = ord R, ,(X) (cf. [3], p. 21). On the other hand,
the expression of the resultant in terms of roots yields ord R, (X)
=Y Y. ord(Y; (X)— Y (X)) and Proposition 2.3 follows.
LI}

Now, we can prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that f, ge C{X, Y} are convenient.
Using Zeuten’s Rule, we get my(f, g) =) ) ord(Y;(X)—Y;(X)) = } ) min

_ i j L
{ord Y;(X), ord Y, (X )}. According to Lemma 2.2 equality holds if (and only if)
the germ (f, g) is non-degenerate. To get the result it suffices to note that part
I of the Newton—Puiseux Theorem gives

> ¥ min {ord ¥,(X), ord ¥;(X)} = 3. ¥ IS,11T; Imin {|S,/1S,11T; T, )

i Seqy Tedg

=y Y [S,T]

Segqt _rTec_ng

3. Computation of [,(f, g). For any power series f (X, Y), g(X, Y) without
constant term [,(f, g, X) is defined to be

inf{® > 0: max {|f(x, y), lg(x, y)I} = C|x|® for (x, y)near 0 C?}.

Analogously, we define [,(f, g, Y). Thus, we have l(f, g) = max {l,(/, g, X),
Ih(f, g, Y)}. In the sequel we will need the following lemma.

LEmMMA 3.1. Let F(Y), G(Y)e C[Y] be non-constant polynomials. Then we
have for each yeC: '

max {|F(y), |G)} = 27 m>¢¢F9EDmin{ min |F(y)), min |G(y)}.
yeG~1(0) yeF ~1(0)
K i
Proof. Write F(Y)=a[](Y-y), G(Y)=b]] (Y—5) in C[Y]. Fix
i=1 =1

j=
~

yeC.
k ]

First case. minly—y| > min|y—y], then |y—y|>|y—y,;| for all

i=1 . j=1
i=1,...,k and a joe{1,...,]}. Hence 2|y—yl > ly—wl+Ily—3;) = lvi— ¥l
for i=1,..., k and consequently

298F1F(p)l = 2Yal [Tly =yl = lal [T 1yi— 3l = IF(y;,)l = min |F(y)l.
i i yeG~1(0)
k i
Second case. min|y—y,| < min|y—y,, a similar calculation as above
i=1 ji=1

shows that 29¢¢|G(y)| = min |G(y).
yeF ~1(0)
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Combining the two cases we get the lemma.

PROPOSITION 3.2 (cf. [2]). Let f(X, Y), g(X, Y)eC{X, Y} be such that
£(0,0) = g(0, 0) = 0 and £ (0, Y)g(0, ¥) # 0in C{Y}. Let (Y;(X)), resp. (¥,(X)),
be the sequence of all solutions in C{X}* (counted with multiplicities) of
AX,Y)=0, resp. g(X, Y)=0. Then

lO(f’ q, X) =
max {max {) ord(Y;(X)— Y, (X))}, max {} ord(Y; (X)— Y,(X))}}.

j i i J
Proposition 3.2 is a modification of a result due to Chadzynski and
Krasinski (cf. [2] and Appendix to this note). Their proof is based on the “horn
neighbourhoods” method used by Kuo and Lu in [§]. Before proceeding to the
proof of Proposition 3.2, let us note that for any z(T)e C{T} (T one variable)
there are C,, C, > Osuch that C, |t|? < |z(t)| < C,|t)" with g = ord z(T) forte C
near 0eC.

Proof of Proposition 3.2. Let [* be the right-hand side of the equality
stated in Proposition 3.2. Choose an integer d>1 such that
Y, (T9), Y;(T)eC{T}. Using the Weierstrass Preparation Theorem, we may

k

assume that f, g are Y-distinguished, so f(T9 Y)= [](Y-Y;(T9),

i=1
i

g(T?, Y) = [] (Y- Y,(T%). Fix t € C sufficiently small. Applying Lemma 3.1 to
j=1
the polynomials (¢, Y), g(t?, Y)eC[Y], we get

max {|f (¢, y)l, lg(¢/, y)I}

>2" max(k, l)mln {mln { l‘[ IY(td) Y (td)l} min { 1_[ IY(td) Y (td)l}}

j=1 i=1 i=1 j=

> Cltl* = Cjtdf°  for some C > 0.

Hence max {|f (x, y)l, lg(x, )} = Clx|" for xeC near 0, and consequently,
I,(f, g, X) < I*. Now, let I > 0 be such that max {|f(x, y)|, lg(x, ¥} = C|x|' for
small x. Hence |g(t*, ,Y,(t9)| = Cle?)' and we get

ord f[(?, (X)— Y;(X)) = ordf (X, ¥,(X)) = (1/d) ord f(T*, ¥(T%) < I

similarly,
ord 1‘[ (Y;(X)—~Y;(X)) = ord g(X, Y;(X)) = (1/d)ord g(T?, Y,(T%) <

This shows that I* <[ so Il,(f, g, X) = [*. Therefore, we get the desired
equality [ (f, g, X) = I*.
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We are in a position to prove Theorem 1.3. The proof is based on
Proposition 3.2 and the Newton—Puiseux Theorem.

Proof of Theorem 1.3. We assume that f, ge C{X, Y} are convenient
and use the notation introduced above. If Y,(X)eC{X}* is a solution of
J(X, Y) =0 corresponding to the segment SedN,, then

Y ord(Y;(X)—Y;(X)) > ) min {ord ¥; (X), ord ¥, (X)}
j j
= Y min{|S,IIS,l, TN} T = (1/S,) ¥ [S, T]
TeRg TeR,

with equality for non-degenerate germs.
If ¥,(X)eC{X}* is a solution of g(X, Y)=0 corresponding to the
segment TeN,, then

Zord(f’j(X)— Y (X)) = Zmin {ord ¥;(X), ord Y, (X)}

= ) min{|TIAT, |, IS,/S,1}1S,l = AT, ) (S, T]

Sen s SeN I

with equality for non-degenerate germs.
According to Proposition 3.2, we get

(33 Lifg. X)> max{m«?lx{(l/lszl)TZS;,t (s, 71} mftlx{(l/lT l)szﬂ (S, T1}}

with equality if (f, g) is non-degenerate.
Let (X, (Y)), resp. (X,(Y)), be the sequence of all solutions in C{Y}* of
(X, Y)=0, resp. g(X, Y) =0. Proposition 3.2 yields

I,(f, g, Y) = max {max ) ord(X(Y)-X,(Y))}, max{Zord(X,(Y)—)?s(Y))}}.

Using this formula and part II of Theorem 2.1, we get
G4 1,(f,g, V) > max{max {ass,) ¥ s, 11}, max{(l/ITl) Y [S, T1}}
TeRy SeRy

with equality if (f, g) is non-degenerate.
Now, we obtain the theorem from (3.3) and (3.4) since

l,(f, 9) = max {Iy(f, g, X), Io(/, 9, V)}.

Appendix. We prove here the formula for [,(f, g) due to Chadzynski and
Krasinski (cf. [2], Main Theorem, and [9] where a special case is given).
Assume that the germ (f, g): (C?, 0) > (C?, 0) has an isolated zero at the
origin. Let f= H f, g = ]_[g,, be factorizations of f and g into irreducible

factors in C{X, Y}
THEOREM (cf. [2], [9]). With the above notation,
lo(/, 9) = max {max {m,(f,, g)/ordf,}, max {mo(f, g,)/ord g,}}.
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Proof. Put I, = the right-hand side of the above equality. Both sides of
the equality being invariant under linear changes of coordinates X, Y, we may
assume that ordf(X, 0)=ordf(0,Y)=ordf, ordg(X,0)=ordg(0, Y)=
ordg. Using Zeuten’s Rule, we get from Proposition 3.2

lo(f, g, X) = max{max {m,(f,, g)/mo(f., X)}, max {m,(f, g,)/mo(g,, X)}}.

Hence, [, (f, g, X) = I, since my(f,, X) = ordf,(0, Y) = ordf, and m,(g,, X) =
ordg,(0, Y) = ord g,. Similarly we check that /,(f, g, Y) =/, and the theorem
follows.
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