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Abstract

For any polynomial mapping F' = (Fl, e, Fn) of C™ with a finite number of zeros we
define the Noether exponent I/(F ) We prove the Jacobj formula for all polynomials of degree

strictly less than Z?:l (deg F; — 1) - IJ(F)
1. The Noether exponent

If P = P(Z) is a complex polynomial in n variables 7 — (Zy, . -y Zn) then
we denote by P = IS(Z), Z = (Z0,Z) the homogenization of P. If H is a set of
homogeneous polynomials in n + 1 variables then we denote by V(H) the subset of
the complex Projective space Pn defined by equations I — 0, HewHN.

The polynomial mapping F = (Fy,. - Fr) 1 C™ = 07 has 4 finite number of
zeros if the set V(F,..., F,) is finite. We PUt Voo (F) = V(Fy, ..., Fp, Zy) and call
Voo (F) the set of zeros of F at infinity. We identify C™ and pn \ V(Z). Clearly F

has a finite number of zeros if and only if the sets F~10) c ¢ and Vo (F) ¢ P7
are both finite.

Definition (1.1). Let F = (Fl,...,Fn) be a polynomial mapping of C" with a
finite number of zeros. By the Noether €xponent of ' we mean the smallest integer
v 2 0 such that the homogeneous forms Zy Ry, , F satisfy Noether’s condition
at every point of the set Voo (F) (cf. Appendix).

If Vio(F) = @ then v(F) = 0. If Voo(F) # 0 and the hypersurfaces meet
transversally at any point of Vo, (F), then v(F)=1. For any polynomial mapping
F=(m,. . F,) with a finite number of zeros we put pu(F) =M > MHmult, F

ZEF~1(0)
where mult, 7 stands for the multiplicity of F at ». It F~1(0) = @ then p(F) =0,

Let d,-:degF,— fori:l,...,n.

Proposition (1.2). If F has 3 finite number of zeros, then v(FY < [ d; — p(F).
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Proof. We have v(F) < rﬁax{ (F1,...,Fa)p : p € Vao(F)} (cf. Appendix (A5)).

On the other hand, by Bezout’s theorem 3= —{(Fy,..., Fn), = [ di — p#(F) and
(1.2) follows. PEVo(F) i=1

Remark(1.3). Let k = §V(F). Then a reasoning similar to the above shows that
v(F) <Tlisy di —p(F) —k+ 1.

Proposition (1.4). Suppose that the polynomial mapping F = (Fy,...,F,) has a
finite number of zeros and let P be a polynomial belonging to the ideal generated
by Fi, ..., F, in the ring of polynomials. Then there exist polynomials Ay, ..., A,
such that P = A{Fy + - -+ An F, with deg A;F; < deg P+ v(F)fori=1,... n

Proof. The homogeneous forms Z(‘)’I3 R, ..., F, (v = v(F)) satisfy Noether’s
conditions at every point of V(fl, o ), then by Noether’s Fundamental Theorem
(cf Appendlx) there are homogeneous forms A1, ..., A, such that ZEP = A Fy +

4 ApF,,  deg(AiF;) = deg(Z¥P) = v+ deg P. We get (1.4) by putting Zo = 1.

For any z = (21,...,2,) € C* we put |z] = max(|z1], ..., |2n]). Recall that if
P :C" — C is a polynomial of degree d then there exist a constant C > 0 such that
|P(2)| < Clelt for |2] > 1.
Proposition (1.5). Let F = (F1,...,F,) be a polynomial mapping with a finite
number of zeros. Then there exist positive constants C and R such that

|F(2)] > Cle|™@)=*F) " for [z] > R.

Proof. Since the fiber F~1(0) is finite then there are polynomials P;(z;) # 0 (¢ = 1,

.,n)} which belong to the ideal generated by Fi, ..., F,, in the ring of polynomials
(cf. [4, p- 23]). Let m; = deg P;(z;). By (1.4) we can write P;(z;) = ApnF1 +---+
AinFrn, deg(A4;jF;) < m; + v(F). Hence there exist constants C > 0 and R > 1
such that forevery 1=1,...,n

2| < G|t ) =min@ ()|

if |z;] > R, and the proposition follows.
Corollary (1.6). If v(F) < min}.,(d;) then F is proper i.e. I 1|im |F(z)] = 4o00.
To end with let us note two corollaries of propositions (1.2), (1.4) and (1.5).

Corollary (1.7). Let F = (Fy,...,F,) be a polynomial mapping with a finite
number of zeros. Let yu = p(F'). Then

(1.7.1) (cf. [3], [10]) there is a constant C' > 0 such that |F(z)] > C|z|#~I1d:+min(di)
for large |z|.

(1.7.2) (cf. [11]) If P belongs to the ideal generated by Fi,..., F, in the ring of
polynomials, then P = A1 Fy + --- + A, F, with deg(A4iF;) < [[i=;di — 4 + degP
fori=1,...,n.

2. The Jacobi formula

Let F = (Fy,...,F,) be a polynomial mapping such that the fiber F~1(0) is
finite and let G : C* — C be a polynomial. We denote by resg,(G) the residue of

G(2) i
Fl(z)-..Fn(z)[dZ]’ [dZ] =dZy N---NdZy, ab

the meromorphic differential form

Z.
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The definition and all properties of residues we need are given in [5]. Let us
recall that if the Jacobian Jp = det(%}) is different from zero at z € F~1(0), then

G(z)
Jr(2)

Theorem (2.1). Suppose that the polynomial mapping F = (Fy,..., F,) : C* —
C" has a finite number of zeros. Then the Jacobi formula

J) Z resp.(G) =10

2€F-1(0)

resp,(G) =

. The main result of this note is

is satisfied for all polynomials G : C* — C of degree strictly less than E?:l(di -1)-
v(F).

Before giving the proof of (2.1) let us make some remarks. If F' has no zeros at
infinity i.e. if Vo (F') = 0 then v(F) = 0 and (2.1) is reduced to the Griffiths—Jacobi
theorem (cf. [5]). In [1], [2], [6] and [7] there are given another generalizations of the
Jacobi theorem. However, these results does not imply ours. If v(F) > 3"7_ (d; — 1)
then the unique polynomial satisfying the assumption of (2.1) is G = 0.

Proof of (2.1). Let Q2 be the meromorphic form in P” given in C* by formula

G(2)

2= Fi(z)...Fn(2)

[dZ).

By Residue Theorem for P" we get

Z fresF,.(G) = —}f Z ATtes, Q.

zeF-1(0) PEVeo(F)

It suffices to show, that res, Q = 0 for all p € Vo (F).
. Let W = (W;,...,W,) be an affine system of coordinates in an affine neigh-
bourhood of p such that W; = 0 is the hyperplane at infinity and p has co-

ordinates (0,...,0). Without loss of generality we may assume that Z; = Wl:,
Z2 — Wzicz Z — Weten
Wy oo dn = Ty

Let P*(W) = W{P(5-, ﬂﬁ;}t—cl,,mnvﬁ—cl) for any polynomial P(Z) of de-
gree d. A simple calculation shows that near p € P™:

[dW], = Zn:(d,- ~1)—1—degG.

=1

__ —WGW)
T Fr(W).. . Frx(W)

By assumptions v > v(F), therefore WY G*(W) belongs to the local ideal generated
by FY(W), ..., Fr(W). Consequently

_wrer(w) .
Fr(W) . Fa(W) “W]) =0

res, {0 = resg (

and we are done.
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Corollary (2.1). If F~1(0) # 0 then v(F) > Y1 ,(di — 1) — deg Jp.

Proof. If F~1(0) # 0 then Y _HTesp.(Jr) = p(F) # 0, consequently we cannot
Z€F—1(0)

have deg Jp < Y"1, (di — 1) — v(F).

Corollary (2.2). (cf. [2]) If the hypersurfaces F; = 0 (1 < i < n) meet transver-
sally at infinity then (J) holds for any polynomial of degree strictly less than y ., (d;—
1)—1.

Proof. If F; = 0 (1 < i < n) meet transversally then v(F) < 1 and (2.2) follows
immediately from (2.1).
Corollary (2.3). Suppose that for any p € Voo (F):
(i) the hypersurfaces F; = 0 (1 < i < n) have distinct tangent cones at p,
(ii)ord, F; #d; (1 <i<n).
Then (J) holds for any polynomial of degree < n — 2.

Proof. By (A6) we have v(F) < max{Z(ordpﬁ’i —1)+1:p € Voo(F)} <
=1

S (d; —2)+1 because ord, (F;) < d;—1 by (ii). Consequently Yo (di—1)—v(F) <
i=1
n — 1 and it suffices to use (2.1).

Example. Let F(Z;,2;) = (Zf’1 — 1,279 + Zg’) (di > 1, da > 2). Then con-
dition (i) is satisfied but (ii) fails. We have )~  resp (1) = —1, hence condition
(i1) is essential. z€F=1(0)

Appendix: Noether’s Conditions

Let Hy, Hy, ..., H, be homogeneous forms of n + 1 variables such that the
set V = V(Hy,...,H,) is finite. We denote by O, the ring of holomorfic germs
at pe P". Let d; = deg H; for 0 <1 < n.

Max Noether’s Fundamental Theorem. The following two conditions are equiv-
alent:

(A1) There is an equation Ho = AyHy +... A, H,, (with A; forms of degree do — d;).
(A2) For any p € V there is an linear form L such that VN V(L) =0

and —L—a';- € (‘LTI,,LT"> Op.

The proof of Noether’s theorem follows easily (cf. [4, p. 120]) from the affine
version of the theorem (cf. [12]) and from the following

(A3) Property. IfH is a homogeneous form of n+1 variables such that VNV (H) =
0, then H is not a zero-divisor modulo ideal generated by H,, ..., H, in the ring
of polynomials.

Proof of (A3). f VAV(H) = @ then Hy, ..., H,, H form the sequence of parameters
in the local ring O of holomorphic functions at 0 € C**!, consequently H is not a
zero-divisor mod (Hy, ..., H,)O. Whence follows easily (A3).

We say that the sequence Hy, Hy, ..., H, satisfies Noether’s conditions at
p € V if (A2) holds true. Let (Hy,..., Hp), denotes the intersection number of Hy,
.-+, Hn at p and let ordp, H be the order of H at p. We have the following
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Criteria for Noether’s conditions. The sequence Hy, ..., H,, satisfies
Noether’s conditions at p € V if any of the following are true:

(A4) Hy, ..., H, meet transversally at p and p € V(H,),

(A5) ord, Ho > (Hy,. .., Hp)p,

(A6) Hy, ..., H, have distinct tangent cones at p and

n
ord, Ho > ) (ord, H; — 1) + 1.

1=1

Proof. (A5) follows from the Mutiplicity theorem (cf. [8, p. 258]), (A6) is proved in
[9] (Theorem 2.3), (A4) is a special case both of (A5) and (A6).
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WYKLADNIK NOETHERA I FORMULA JACOBIEGO

Streszczenie

Dla kazdego odwzorowanija wielomianowego F' = (Fl, ceey Fn) przestrzeni C™ o skoriczonej
liczbie zer definiujemy wykladnik Noethera V(F) a nastepnie dowodzimy formuly Jacobiego dla
wielomiandw stopnia mniejszego od Z?:l (deg F; — 1) — I/(F).



