BULLETIN

LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE ŁÓDŹ 1993

Vol. XLIII, 6

Recherches sur les déformations

Vol. XV, 6

pp.53-57

Arkadiusz Płoski

THE NOETHER EXPONENT AND JACOBI FORMULA

Abstract

į,

For any polynomial mapping $F=(F_1,\ldots,F_n)$ of \mathcal{C}^n with a finite number of zeros we define the Noether exponent $\nu(F)$. We prove the Jacobi formula for all polynomials of degree strictly less than $\sum_{i=1}^{n} (\deg F_i - 1) - \nu(F)$.

1. The Noether exponent

If P = P(Z) is a complex polynomial in n variables $Z = (Z_1, \ldots, Z_n)$ then we denote by $\tilde{P} = \tilde{P}(\tilde{Z})$, $\tilde{Z} = (Z_0, Z)$ the homogenization of P. If \mathcal{H} is a set of homogeneous polynomials in n+1 variables then we denote by $V(\mathcal{H})$ the subset of the complex projective space \mathcal{P}^n defined by equations $H=0, H\in\mathcal{H}$.

The polynomial mapping $F = (F_1, \ldots, F_n) : \mathcal{C}^n \to \mathcal{C}^n$ has a finite number of zeros if the set $V(\tilde{F}_1,\ldots,\tilde{F}_n)$ is finite. We put $V_{\infty}(F)=V(\tilde{F}_1,\ldots,\tilde{F}_n,Z_0)$ and call $V_{\infty}(F)$ the set of zeros of F at infinity. We identify \mathcal{C}^n and $\mathcal{P}^n \setminus V(Z_0)$. Clearly Fhas a finite number of zeros if and only if the sets $F^{-1}(0)\subset \mathcal{C}^n$ and $V_\infty(F)\subset \mathcal{P}^n$

Definition (1.1). Let $F = (F_1, \ldots, F_n)$ be a polynomial mapping of C^n with a finite number of zeros. By the Noether exponent of F we mean the smallest integer $\nu \geq 0$ such that the homogeneous forms Z_0^{ν} , $\tilde{F}_1, \ldots, \tilde{F}_n$ satisfy Noether's condition at every point of the set $V_{\infty}(F)$ (cf. Appendix).

If $V_{\infty}(F)=\emptyset$ then $\nu(F)=0$. If $V_{\infty}(F)\neq\emptyset$ and the hypersurfaces meet transversally at any point of $V_{\infty}(F)$, then $\nu(F)=1$. For any polynomial mapping transversally at any point of $V_{\infty}(F)$, then $\nu(F) = 1$. For any polynomial $F = (F_1, \dots, F_n)$ with a finite number of zeros we put $\mu(F) = \bigvee_{z \in F^{-1}(0)} \bigvee_{z \in F^{-1$

where mult_z F stands for the multiplicity of F at z. If $F^{-1}(0) = \emptyset$ then $\mu(F) = 0$.

Let $d_i = \deg F_i$ for i = 1, ..., n.

Proposition (1.2). If F has a finite number of zeros, then $\nu(F) \leq \prod_{i=1}^{n} d_i - \mu(F)$.

No. 6

Proof. We have $\nu(F) \leq \max\{(\tilde{F}_1, \dots, \tilde{F}_n)_p : p \in V_{\infty}(F)\}$ (cf. Appendix (A5)). On the other hand, by Bezout's theorem $\sum_{p \in V_{\infty}(F)} (\tilde{F}_1, \dots, \tilde{F}_n)_p = \prod_{i=1}^n d_i - \mu(F)$ and (1.2) follows.

Remark(1.3). Let $k = \sharp V_{\infty}(F)$. Then a reasoning similar to the above shows that $\nu(F) \leq \prod_{i=1}^n d_i - \mu(F) - k + 1$.

Proposition (1.4). Suppose that the polynomial mapping $F = (F_1, \ldots, F_n)$ has a finite number of zeros and let P be a polynomial belonging to the ideal generated by F_1, \ldots, F_n in the ring of polynomials. Then there exist polynomials A_1, \ldots, A_n such that $P = A_1 F_1 + \cdots + A_n F_n$ with deg $A_i F_i \leq \deg P + \nu(F)$ for $i = 1, \ldots, n$.

Proof. The homogeneous forms $Z_0^{\nu}\tilde{P}$, \tilde{F}_1 , ..., \tilde{F}_n ($\nu = \nu(F)$) satisfy Noether's conditions at every point of $V(\tilde{F}_1, \ldots, \tilde{F}_n)$, then by Noether's Fundamental Theorem (cf. Appendix) there are homogeneous forms $\tilde{A}_1, \ldots, \tilde{A}_n$ such that $Z_0^{\nu}\tilde{P} = \tilde{A}_1\tilde{F}_1 + \cdots + \tilde{A}_n\tilde{F}_n$, $\deg(\tilde{A}_i\tilde{F}_i) = \deg(Z_0^{\nu}\tilde{P}) = \nu + \deg P$. We get (1.4) by putting $Z_0 = 1$.

For any $z = (z_1, \ldots, z_n) \in C^n$ we put $|z| = \max(|z_1|, \ldots, |z_n|)$. Recall that if $P: C^n \to C$ is a polynomial of degree d then there exist a constant C > 0 such that $|P(z)| \leq C|z|^d$ for $|z| \geq 1$.

Proposition (1.5). Let $F = (F_1, ..., F_n)$ be a polynomial mapping with a finite number of zeros. Then there exist positive constants C and R such that

$$|F(z)| \ge C|z|^{\min(d_i)-\nu(F)}$$
 for $|z| \ge R$.

54

Proof. Since the fiber $F^{-1}(0)$ is finite then there are polynomials $P_i(z_i) \not\equiv 0$ $(i = 1, \ldots, n)$ which belong to the ideal generated by F_1, \ldots, F_n in the ring of polynomials (cf. [4, p. 23]). Let $m_i = \deg P_i(z_i)$. By (1.4) we can write $P_i(z_i) = A_{i1}F_1 + \cdots + A_{in}F_n$, $\deg(A_{ij}F_j) \leq m_i + \nu(F)$. Hence there exist constants C > 0 and $R \geq 1$ such that for every $i = 1, \ldots, n$

$$|z_i|^{m_i} \le C|z|^{m_i + \nu(F) - \min(d_i)} |F(z)|$$

if $|z_i| \geq R$, and the proposition follows.

Corollary (1.6). If $\nu(F) < \min_{i=1}^n (d_i)$ then F is proper i.e. $\lim_{|z| \to \infty} |F(z)| = +\infty$.

To end with let us note two corollaries of propositions (1.2), (1.4) and (1.5).

Corollary (1.7). Let $F = (F_1, ..., F_n)$ be a polynomial mapping with a finite number of zeros. Let $\mu = \mu(F)$. Then

(1.7.1) (cf. [3], [10]) there is a constant C > 0 such that $|F(z)| \ge C|z|^{\mu - \prod d_i + \min(d_i)}$ for large |z|.

(1.7.2) (cf. [11]) If P belongs to the ideal generated by F_1, \ldots, F_n in the ring of polynomials, then $P = A_1 F_1 + \cdots + A_n F_n$ with $\deg(A_i F_i) \leq \prod_{i=1}^n d_i - \mu + \deg P$ for $i = 1, \ldots, n$.

2. The Jacobi formula

Let $F=(F_1,\ldots,F_n)$ be a polynomial mapping such that the fiber $F^{-1}(0)$ is finite and let $G:\mathcal{C}^n\to\mathcal{C}$ be a polynomial. We denote by $\operatorname{res}_{F,z}(G)$ the residue of the meromorphic differential form $\frac{G(z)}{F_1(z)\ldots F_n(z)}[dZ], \quad [dZ]=dZ_1\wedge\cdots\wedge dZ_n$, at z.

The definition and all properties of residues we need are given in [5]. Let us recall that if the Jacobian $J_F = \det(\frac{\partial F_i}{\partial Z_j})$ is different from zero at $z \in F^{-1}(0)$, then $\operatorname{res}_{F,z}(G) = \frac{G(z)}{J_F(z)}$. The main result of this note is

Theorem (2.1). Suppose that the polynomial mapping $F = (F_1, \ldots, F_n) : \mathcal{C}^n \to \mathcal{C}^n$ has a finite number of zeros. Then the Jacobi formula

$$\sum_{z \in F^{-1}(0)} \operatorname{res}_{F,z}(G) = 0$$

is satisfied for all polynomials $G: \mathcal{C}^n \to \mathcal{C}$ of degree strictly less than $\sum_{i=1}^n (d_i - 1) - \nu(F)$.

Before giving the proof of (2.1) let us make some remarks. If F has no zeros at infinity i.e. if $V_{\infty}(F) = \emptyset$ then $\nu(F) = 0$ and (2.1) is reduced to the Griffiths-Jacobi theorem (cf. [5]). In [1], [2], [6] and [7] there are given another generalizations of the Jacobi theorem. However, these results does not imply ours. If $\nu(F) \geq \sum_{i=1}^{n} (d_i - 1)$ then the unique polynomial satisfying the assumption of (2.1) is $G \equiv 0$.

Proof of (2.1). Let Ω be the meromorphic form in \mathcal{P}^n given in \mathcal{C}^n by formula

$$\Omega = \frac{G(z)}{F_1(z) \dots F_n(z)} [dZ].$$

By Residue Theorem for \mathcal{P}^n we get

$$\sum_{z \in F^{-1}(0)} \operatorname{res}_{F,z}(G) = - \lim_{p \in V_{\infty}(F)} \operatorname{res}_{p} \Omega.$$

It suffices to show, that $\operatorname{res}_p \Omega = 0$ for all $p \in V_{\infty}(F)$.

Let $W = (W_1, ..., W_n)$ be an affine system of coordinates in an affine neighbourhood of p such that $W_1 = 0$ is the hyperplane at infinity and p has coordinates (0, ..., 0). Without loss of generality we may assume that $Z_1 = \frac{1}{W_1}$, $Z_2 = \frac{W_2 + c_2}{W}$, ..., $Z_n = \frac{W_n + c_n}{W}$.

 $Z_2 = \frac{W_2 + c_2}{W_1}, \dots, Z_n = \frac{W_n + c_n}{W_1}.$ Let $P^*(W) = W_1^d P(\frac{1}{W_1}, \frac{W_2 + c_2}{W_1}, \dots, \frac{W_n + c_n}{W_1})$ for any polynomial P(Z) of degree d. A simple calculation shows that near $p \in \mathcal{P}^n$:

$$\Omega = \frac{-W_1^{\nu} G^*(W)}{F_1^*(W) \dots F_n^*(W)} [dW], \quad \nu = \sum_{i=1}^n (d_i - 1) - 1 - \deg G.$$

By assumptions $\nu \geq \nu(F)$, therefore $W_1^{\nu}G^*(W)$ belongs to the local ideal generated by $F_1^*(W), \ldots, F_n^*(W)$. Consequently

$$\operatorname{res}_{p} \Omega = \operatorname{res}_{0} \left(\frac{-W_{1}^{\nu} G^{*}(W)}{F_{1}^{*}(W) \dots F_{n}^{*}(W)} [dW] \right) = 0$$

and we are done.

Corollary (2.1). If $F^{-1}(0) \neq \emptyset$ then $\nu(F) \geq \sum_{i=1}^{n} (d_i - 1) - \deg J_F$.

1 15

Proof. If $F^{-1}(0) \neq \emptyset$ then $\sum_{z \in F^{-1}(0)} \text{Hres}_{F,z}(J_F) = \mu(F) \neq 0$, consequently we cannot have $\deg J_F < \sum_{i=1}^n (d_i - 1) - \nu(F)$.

Corollary (2.2). (cf. [2]) If the hypersurfaces $\tilde{F}_i = 0$ $(1 \le i \le n)$ meet transversally at infinity then (J) holds for any polynomial of degree strictly less than $\sum_{i=1}^{n} (d_i - 1) - 1$.

Proof. If $\tilde{F}_i = 0$ $(1 \le i \le n)$ meet transversally then $\nu(F) \le 1$ and (2.2) follows immediately from (2.1).

Corollary (2.3). Suppose that for any $p \in V_{\infty}(F)$:

- (i) the hypersurfaces $\tilde{F}_i = 0$ $(1 \le i \le n)$ have distinct tangent cones at p,
- (ii) ord_p $\tilde{F}_i \neq d_i$ (1 < i < n).

Then (J) holds for any polynomial of degree $\leq n-2$.

Proof. By (A6) we have $\nu(F) \leq \max\{\sum_{i=1}^{n} (\operatorname{ord}_{p} \tilde{F}_{i} - 1) + 1 : p \in V_{\infty}(F)\} \leq \sum_{i=1}^{n} (d_{i}-2) + 1 \text{ because } \operatorname{ord}_{p}(\tilde{F}_{i}) \leq d_{i}-1 \text{ by (ii)}. \text{ Consequently } \sum_{i=1}^{n} (d_{i}-1) - \nu(F) \leq n-1 \text{ and it suffices to use (2.1)}.$

Example. Let $F(Z_1, Z_2) = (Z_1^{d_1} - 1, Z_1 Z_2 + Z_2^{d_2})$ $(d_1 \ge 1, d_2 \ge 2)$. Then condition (i) is satisfied but (ii) fails. We have $\sum_{z \in F^{-1}(0)} \operatorname{res}_{F,z}(1) = -1$, hence condition (ii) is essential.

Appendix: Noether's Conditions

Let H_0, H_1, \ldots, H_n be homogeneous forms of n+1 variables such that the set $V = V(H_1, \ldots, H_n)$ is finite. We denote by \mathcal{O}_p the ring of holomorfic germs at $p \in \mathcal{P}^n$. Let $d_i = \deg H_i$ for $0 \le i \le n$.

Max Noether's Fundamental Theorem. The following two conditions are equivalent:

- (A1) There is an equation $H_0 = A_1 H_1 + ... A_n H_n$ (with A_i forms of degree $d_0 d_i$).
- (A2) For any $p \in V$ there is an linear form L such that $V \cap V(L) = \emptyset$ and $\frac{H_0}{L^{d_0}} \in \left(\frac{H_1}{L^{d_1}}, \dots, \frac{H_n}{L^{d_n}}\right) \mathcal{O}_p$.

The proof of Noether's theorem follows easily (cf. [4, p. 120]) from the affine version of the theorem (cf. [12]) and from the following

(A3) Property. If H is a homogeneous form of n+1 variables such that $V \cap V(H) = \emptyset$, then H is not a zero-divisor modulo ideal generated by H_1, \ldots, H_n in the ring of polynomials.

Proof of (A3). If $V \cap V(H) = \emptyset$ then H_1, \ldots, H_n , H form the sequence of parameters in the local ring \mathcal{O} of holomorphic functions at $0 \in \mathcal{C}^{n+1}$, consequently H is not a zero-divisor $\text{mod } (H_1, \ldots, H_n)\mathcal{O}$. Whence follows easily (A3).

We say that the sequence H_0, H_1, \ldots, H_n satisfies Noether's conditions at $p \in V$ if (A2) holds true. Let $(H_1, \ldots, H_n)_p$ denotes the intersection number of H_1, \ldots, H_n at p and let $\operatorname{ord}_p H$ be the order of H at p. We have the following

Criteria for Noether's conditions. The sequence H_0, \ldots, H_n satisfies Noether's conditions at $p \in V$ if any of the following are true:

(A4) H_1, \ldots, H_n meet transversally at p and $p \in V(H_0)$,

(A5) ord_p $H_0 \geq (H_1, \ldots, H_n)_p$,

(A6) H_1, \ldots, H_n have distinct tangent cones at p and

$$\operatorname{ord}_{p} H_{0} \geq \sum_{i=1}^{n} (\operatorname{ord}_{p} H_{i} - 1) + 1.$$

Proof. (A5) follows from the Mutiplicity theorem (cf. [8, p. 258]), (A6) is proved in [9] (Theorem 2.3), (A4) is a special case both of (A5) and (A6).

References

[1] A. Berenstein, A. Yger, Une formule de Jacobi et ses conséquences, Ann. Sci. École Norm. Sup.(4) 24 (1991), 363-377.

[2] G. Biernat, On the Jacobi-Kronecker formula for a polynomial mapping having zeros at infinity, Bull. Soc. Sci. Lett. Lódź, (to appear).

[3] J. Chądzyński, On proper polynomial mappings, Bull. Polish Acad. Sci. Math. 31 (1983), 115-120.

[4] W. Fulton, Algebraic Curves (An Introduction to Algebraic Geometry), New York-Amsterdam, 1969.

[5] Ph. Griffiths, Variations on a theorem of Abel, Invent. Math. 35 (1976), 321-390.

[6] A. G. Khovanski, Newton polyhedra and the Euler-Jacobi formula, Uspekhi Mat. Nauk **33,6** (1978), 245–246.

[7] M. Kreuzer, E. Kunz, Traces in strict Frobenius algebras and strict complete intersections, J. Reine. Angew. Math. 381 (1987), 181-204.

S. Lojasiewicz, Introduction to Complex Algebraic Geometry, Birkhäuser Verlag, 1991.

[9] A. Ploski, On the Noether exponent, Bull. Soc. Sci. Lett. Lódź XL (2), 72 (1990),

, An inequality for polynomial mappings, Bull. Polish Acad. Sci. Math., (to $[10]{-}$ appear).

[11] B. Schiffman, Degree Bounds for the Division Problem in Polynomial Ideals, Michigan Math. J. 36 (1989), 163-171.

[12] P. Tworzewski, A Note on the Max Noether Theorem, Bull. Soc. Sci. Lett. Łódź 7 (1989), 1-3.

Department of Mathematics Technical University Al. 1000 LPP 7, 25-314 Kielce, Poland

Presented by Jacek Chądzyński at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on June 14, 1993

WYKŁADNIK NOETHERA I FORMUŁA JACOBIEGO

Streszczenie

1

Dla każdego odwzorowania wielomianowego $F=(F_1,\ldots,F_n)$ przestrzeni \mathcal{C}^n o skończonej liczbie zer definiujemy wykładnik Noethera u(F) a następnie dowodzimy formuly Jacobiego dla wielomianów stopnia mniejszego od $\sum_{i=1}^{n} (\deg F_i - 1) - \nu(F)$.