# BULLETIN

DE LA SOCIÉTÉ DES SCIENCES ET DES LETTRES DE LODZ

1990

Vol. XL, 2

Recherches sur les déformations

No. 72

pp. 23-29

Dedicated to Professor Tadeusz Tietz on his 70th birthday

Arkadiusz Płoski

ON THE NOETHER EXPONENT

#### **Sumary**

Let  $F = (f_1, \dots, f_n)$  be a germ of a holomorphic mapping having an isolated zero at  $0 \in \mathbb{R}^n$ . The Noether exponent  $\rho$  (F) of F is the smallest integer  $\rho > 0$  such that every germ of order greater or equal to  $\rho$  belongs to the ideal generated by  $f_1, \dots, f_n$ . The aim of this paper is to give the estimation of  $\rho$  (F) dependent on the orders ord  $f_1$ .

# 1. Introduction

Let  $\mathbb{C}\{z\}$  be the ring of convergent power series in variables  $z=(z_1,\ldots,z_n)$ . If  $h\in\mathbb{C}\{z\}$  and  $h=\sum_{i=m}^{+\infty}h_i$ , where  $h_i$  is a homogeneous polynomial of degree i and  $h_m\neq 0$ , then we put ord h=m, in  $h=h_m$ . We also let ord  $0=+\infty$ , in 0=0. The initial form inh of the power series h determines an algebraic subset of the projective space  $\mathbb{CP}^{n-1}$  which we denote by V(inh). Any sequence of h power series h power series h without constant term induces the germ of a holomorphic mapping h without constant term induces the germ of a holomorphic mapping h without constant term induces the germ of h holomorphic mapping h is the quotient ring h where h is the ideal of h is the quotient ring h and h is ring will be denoted

by  $Q_O(F)$ . We say that F is finite if  $\dim_{\mathbb{C}}Q_O(F) < +\infty$  and call  $\mu_O(F) = \dim_{\mathbb{C}}Q_O(F)$  the multiplicity of F (see [5] for an equivalent definition). The germ F is finite if and only if F has an isolated zero. Let us recall the following well-known property of multiplicity:

THEOREM 1.1. For any finite germ  $F = (f_1, ..., f_n) : (\mathfrak{E}^n, 0) + (\mathfrak{E}^n, 0)$  we have  $\mu_0(F) \ge \operatorname{ord} f_1 ... \operatorname{ord} f_n$ . The equality holds if and only if  $\bigcap_{i=1}^n V(\inf_i) = \emptyset$ .

Simple proofs of (1.1) were given in [6] and [7]. In the sequel we shall also need the version of Nullstelensatz proved in [7].

THEOREM 1.2 (cf. [7]). Let  $F = (f_1, ..., f_n)$  be a finite germ of multiplicity  $\mu$ . Then for any power series  $h \in C\{z\}$  without constant term there exist series  $a_1, ..., a_n$  such that  $h^{\mu} = a_1 f_1 + ... + a_n f_n$  with ord( $a_i f_i$ )  $\geq \operatorname{ord} f_i$ ...ord  $f_n$  ord  $f_n$  ord  $f_n$ ...,  $f_n$ 

We denote by  $\operatorname{Res}_{\mathbf{F}}(h)$  the residue of the meromorphic differential form  $h(z)/f_1(z)...f_n(z)dz_1\wedge...\wedge dz_n$ . The definition and all the properties of residues we need are given in [4]. Recall that  $\operatorname{Res}_{\mathbf{F}}(h)=0$  for all  $h \in I(F)$ . On the other hand,  $\operatorname{Res}_{\mathbf{F}}(JacF)=\mu_O(F)$ , where  $\operatorname{JacF}=\det(\partial f_1/\partial z_1)$ , so we have

THEOREM 1.3. If the germ F is finite, then the Jacobian Jac F does not belong to the ideal I(F).

#### 2. The Noether exponent

Let  $F=(f_1,\ldots,f_n)$  be a finite germ. By the Noether exponent  $\rho_0(F)$  of F we mean the smallest positive integer  $\rho$  such that every power series of order greater or equal to  $\rho$  belongs to the ideal I(F). The Noether exponent, like the multiplicity  $\mu_0(F)$ , depends only on the local ring  $Q_0(F)$ . Indeed, if  $m(Q_0(F))$  denotes the unique maximal ideal of  $Q_0(F)$ , then  $\rho_0(F)$  equals the smallest  $\rho$  such that  $m(Q_0(F))^{\rho}=\{0\}$ . Let us note the following two lemmas:

**LEMMA 2.1.** For any finite germ  $F: \rho_0(F) \ge \operatorname{ord}(\operatorname{Jac} F) + 1$ .

<u>Proof.</u> Lemma 2.1 follows immediately from Theorem 1.3 and the definition of  $\rho_{O}(F)$ .

LEMMA 2.2. Let  $G = (g_1, \dots, g_n)$  be a finite germ such that  $g_j = a_{j1}f_1 + \dots + a_{jn}f_n$  with  $a_{jk} \in \mathcal{C}\{z\}$ . Then  $\rho_0(F) \leq \rho_0(G) - \text{ord}(\text{det}(a_{jk}))$ .

 $\frac{\text{Proof.}}{\text{ord}(hka)} \geq \rho_0(G) \text{ for any } k \in \mathfrak{f}\{z\} \text{ and, by the definition of } \rho_0(G), \\ \text{hka} \in I(G), \text{ hence } \operatorname{Res}_G(hka) = 0 \text{ for any } k \in \mathfrak{f}\{z\}. \\ \text{From the transformation formula (cf. [4], chapt. 5) we get } \operatorname{Res}_G(hk) = \operatorname{Res}_G(hka) = 0 \\ \text{for any } k \in \mathfrak{f}\{z\}, \text{ so the local duality theorem (cf. [4]) implies } \\ \text{that } h \in I(F). \\ \text{Thus we have shown that the ideal } I(F) \text{ contains all power series of order greater than } \\ \rho_0(F) \leq \rho_0(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a.} \\ \text{Theorem} \text{ for any } k \in \mathfrak{f}(G) - \text{ord a$ 

The theorem given below was proved by Chadzyński and Krasiński in the case n=2 (cf. [3]).

THEOREM 2.3. Let  $F = (f_1, ..., f_n)$  be a finite germ. Then  $\rho_0(F) \ge \sum_{i=1}^n (\operatorname{ord} f_i - 1) + 1$ . The equality holds if and only if  $\bigcap_{i=1}^n V(\inf_i) = \emptyset$ .

Proof. Let  $d_i = \operatorname{ord} f_i$ ,  $\Phi_i = \inf_i$  for  $i = 1, \ldots, n$ . The inequality  $\rho_o(F) \ge \sum_{i=1}^n (d_i - 1) + 1$  follows immediately from (2.1) since  $\operatorname{ord}(\operatorname{JacF}) \ge \sum_{i=1}^n (d_i - 1)$ . We shall prove that the condition  $\bigcap_{i=1}^n V(\Phi_i) = \emptyset$  implies the estimate  $\rho_o(F) \le \sum_{i=1}^n (d_i - 1) + 1$ . According to (1.1) we have  $\mu_o(F) = \bigcap_{i=1}^n d_i$  and, by (1.2), we can write  $z_i^{\mu} = a_{i1}f_1 + \cdots + a_{in}f_n$  with  $\operatorname{ord}(a_{ij}f_j) \ge d_1 \cdots d_n = \mu$ , so  $\operatorname{ord}(\det(a_{ij})) \ge \sum_{j=1}^n (\mu - d_j)$ . By applying Lemma 2.2 to the germ  $G = (z_1^{\mu}, \dots, z_n^{\mu})$ , for which  $\rho_o(G) = n(\mu - 1) + 1$ , we get

$$\rho_{o}(F) \leq n(\mu-1) + 1 - \sum_{j=1}^{n} (\mu - d_{j}) = \sum_{j=1}^{n} ((d_{j}-1) + 1.$$

Now, let us consider a germ  $F = (f_1, ..., f_n)$  such that  $\rho_0(F) = \sum_{j=1}^n (d_j - 1) + 1$ . We have to show that  $\bigcap_{i=1}^n V(\Phi_i) = \emptyset$ . If we suppose, to the contrary, that  $\bigcap_{i=1}^n V(\Phi_i) \neq \emptyset$  then, by a classical property of homogeneous polynomials (cf. [8] for a simple,

direct proof of this property), the Jacobian Jac  $\Phi$  belongs to the ideal generated by  $\Phi_1, \ldots, \Phi_n$  and we can write  $\operatorname{Jac}\Phi = A_1\Phi_1 + \cdots + A_n\Phi_n$ , where  $A_i$  is a homogeneous form of degree  $\sum_{j=1}^n (d_j-1) - d_j$  or  $A_i = 0$ . Therefore

26

ord(Jac
$$\Phi$$
 -  $A_1 f_1$  - ... -  $A_n f_n$ ) = ord( $A_1 (\Phi_1 - f_1) + ... + A_n (\Phi_n - f_n)$ )  

$$\geq \sum_{j=1}^{n} (d_j - 1) + 1 = \rho_0(F)$$

and we get  $Jac\Phi \in I(F)$ . On the other hand, a simple calculation shows that

JacF = Jac $\Phi$  + monomials of order  $\geq \sum_{j=1}^{n} (d_j - 1) + 1$ .

Consequently, we get  $JacF \in I(F)$ , which is a contradiction with (1.3).

Let us present now a simple proof of Bertini's theorem in the form given by Tsikh (cf. [1], [9]).

THEOREM 2.4 (Bertini's theorem). Let  $F = (f_1, ..., f_n)$  be a finite germ. Suppose that the set  $\bigcap_{i \neq i_0} V(\inf_i)$  is finite for some  $i_0 \in \{1, ..., n\}$ . Then

$$\rho_{o}(F) \leq \mu_{o}(F) - \prod_{j=1}^{n} \operatorname{ord} f_{j} + \sum_{j=1}^{n} (\operatorname{ord} f_{j} - 1) + 1.$$

Proof. We can assume that  $i_0 = n$ . There is a linear form L such that  $\bigcap_{i=1}^{n-1} V \cdot \inf_i) \cap V(L) = \emptyset$ . Let  $G = (f_1, \ldots, f_{n-1}, L^{\mu})$ , where  $\mu = \mu_0(F)$ . By Theorem 2.3 we have

$$\rho_{o}(G) = \sum_{i=1}^{n-1} (ordf_{i} - 1) + \mu.$$

According to (1.2) we can write  $L^{\mu} = a_1 f_1 + ... + a_n f_n$  with ord( $a_j f_j$ )  $\geq \prod_{i=1}^{n} \operatorname{ord} f_i$ . Hence, by (2.2), we get

$$\rho_o(\mathtt{F}) \leq \rho_o(\mathtt{G}) - \mathrm{orda}_n \leq \sum_{i=1}^{n-1} (\mathrm{ordf}_i - 1) + \mu - \prod_{i=1}^n \mathrm{ordf}_i + \mathrm{ordf}_n$$

= 
$$\mu - \prod_{i=1}^{n} \operatorname{ordf}_{i} + \sum_{i=1}^{n} (\operatorname{ordf}_{i} - 1) + 1.$$

Bertini's estimates cannot be strengthened. Indeed, letting

$$F = (z_1^{d_1} + z_2^{d_1 + \mu - d_1 d_2}, z_1^{d_2 - 1})(d_1, d_2 \ge 1, \mu \ge d_1 d_2)$$

we see that

ordf<sub>1</sub> = d<sub>1</sub>, ordf<sub>2</sub> = d<sub>2</sub>, 
$$\mu_0(F) = \mu$$
,  $\rho_0(F) = \mu - d_1 d_2 + d_1 + d_2 - 1$ 

(one checks that  $z_2^{\mu-d_1d_2+d_1+d_2-2} \notin I(F)$ ). Similar examples can also be constructed for n > 2 (cf. example given in [7]). We complete this section with an application of (2.3) and (2.4).

COROLLARY 2.5. Suppose that F satisfies the assumptions of (2.4). Let  $\mu_0(F) = \prod_{i=1}^n \operatorname{ord} f_i + 1$ . Then  $\rho_0(F) = \sum_{i=1}^n (\operatorname{ord} f_i - 1) + 2$ .

 $\frac{P \text{ roof.}}{\rho_0(F) \ge \Gamma_{i=1}^n}$  By (1.1) we have  $\bigcap_{i=1}^n V(\inf_i) \ne \emptyset$  so, by (2.3), we get  $\rho_0(F) \ge \Gamma_{i=1}^n(\text{ord}f_i - 1) + 2$ . The equality follows from Bertini's theorem.

# 3. Concluding remarks

E. Bertini proved Theorem 2.4 in [1] (for n=2) and in [2] (for  $n\ge 2$ ), however his proof given in [2] contains some obscure points. I do not know how to prove (2.4) without additional assumptions concerning the initial forms. Note here that (2.4) holds true under the assumption that the set  $\bigcap_{i=1}^{n} V(\inf_{i})$  is finite. Indeed, we have the following

PROPOSITION 3.1. Let  $F = (f_1, \ldots, f_n)$  be a finite germ such that the set  $\bigcap_{i=1}^{n} V(\inf_i)$  is finite. Then there exist power series  $g_1, \ldots, g_n$  such that (i)  $g_1, \ldots, g_n$  generate the ideal I(F), (ii)  $\operatorname{ord} g_i = \operatorname{ord} f_i$  for  $i = 1, \ldots, n$ , and (iii) there exists  $i_0 \in \{1, \ldots, n\}$ . such that the set  $\bigcap_{i \neq i_0} V(\operatorname{ing}_i)$  is finite.

Proof. Let us keep the notation introduced in the proof of (2.3). Assume that  $q_i = d_i - d_n \ge 0$  for i = 1, ..., n and put  $V = \bigcap_{i=1}^{n-1} V(\Phi_i)$ . From the assumption it follows that  $\dim V \le 1$ , there is a linear form L such that  $V \cap V(L)$  is finite. Let  $(a_1, \ldots, a_{n-1})$  be the regular value (in the sense of Sard) of the

$$(\phi_1/L^{q_1}\phi_n,\ldots,\phi_{n-1}/L^{q_{n-1}}\phi_n): \mathfrak{CP}^{n-1} \setminus V(L\phi_n) + \mathfrak{C}^{n-1}.$$

We check easily that the set  $\bigcap_{i=1}^{n-1} V(\Phi_i - a_i L^{q_i} \Phi_n)$  is finite, so it suffices to put

$$g_i = f_i - a_i L^{q_i} f_n$$
 for  $i = 1, ..., n-1$  and  $g_n = f_n$ .

Now, let  $F = (f_1, ..., f_n)$  be a finite germ such that the set  $\bigcap_{i=1}^{n} V(\inf_{i})$  is finite and let  $G = (g_1, \dots, g_n)$ , where  $g_i$  are the series like in (3.1). From I(F) = I(G) it follows that  $\mu_0(F) = \mu_0(G)$ and  $\rho_0(F) = \rho_0(G)$ . Hence we get Bertini's estimate for  $\rho_0(F)$  by applying (2.4) to G.

#### References

- [1] Bertini, E.: Zum Fundamentalsatz aus der Theorie der algebraischen Funktionen, Math. Ann. 34 (1889), 447-449.
- -: Sopra la teoria dei moduli di forme algebriche, Rend. Lincei <u>18</u>(5),
- [3] Chądzyński, J., T. Krasiński: The Noether exponent and the Łojasiewicz
- exponent I, II, Bull. Soc. Sci. Lettres, vol. XXXVI (14), 26 (1986).
  [4] Griffiths, Ph., J. Harris: Principles of algebraic geometry, J. Willey and Sons, New York 1978.
- [5] Łojasiewicz, S.: Introduction to complex analytic geometry, PWN 1988 (in Polish).
- [6] Miodek, A.: The generalized parametric multiplicity, Bull. Soc. Sci. Lettres, vol. XXXVII (6) 46 (1987).
- [7] Płoski, A.: Sur l'exposant d'une application analytique, Bull. Pol. Acad. Math. 32 (1984), 669-673.
- [8] Spodzieja, S.: On some property of the Jacobian of a homogeneous mapping, Bull. Soc. Sci. Lettres Łódź, to appear.

[9] Tsikh, A.K.: Generalization of Bertini's Theorem of the index of a primary ideal in the ring 0<sub>a</sub>, Uspekhi Mat. Nauk 40(2) (1985), 205-206 (in Russian).

Institute of Applied Mechanics Technical University Al. Tysiaclecia PP 7 PL-25-314 Kielce, Poland

Presented by Jacek Chadzyński at the Session of the Mathematical-Physical Commission of the Łódź Society of Sciences and Arts on January 4, 1989

## O WYKLADNIKU NOETHERA

### <u>Stressczenie</u>

Niech T=(f<sub>1</sub>,...,f<sub>n</sub>) będzie kiełkiem odwzorowania holomorficznego o serse isolowanym w punkcie 0 € ¢<sup>n</sup>. Wykładnikiem Noethera ρ<sub>0</sub>(F) kiełka F nasywany najmniejszą liczbę całkowitą ρ>0 taką, że kaźdy kiełek rzędu większego lub równego ρ leży w ideale generowanym przes f<sub>1</sub>,...,f<sub>1</sub>. Celem tej pracy jest oszacowanie ρ<sub>0</sub>(F) w zależności od rzędów ord f<sub>1</sub>.