Algebraic Dependence of Polynomials
After O. Perron and Some Applications!
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Abstract. We give some applications of a classical theorem (Oskar Perron 1927)
on algebraic dependence to Bézout’s type estimations.
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“The method of high-school algebra is powerful, beautiful, and accessible. So let
us not be overwhelmed by the groups-rings-fields or the functional arrows of the
other two algebras and thereby lose sight of the power of the explicit algorithmic
processes...”

Shreeram S. Abhyankar

The aim of this note is to give an example that illustrates Shreeram S. Abhyankar’s thesis
quoted above. Other examples the reader will find in [1]. We will show how classical
Perron’s Theorem on algebraic dependence of polynomials may be used to get nontrivial
results such as a bound on the degree of the inverse of a polynomial automorphism and
a weak version of Bézout’s Theorem. Oskar Perron published the theorem on algebraic
dependence of polynomials in Algebra I (Die Grundlagen), Berlin 1927 and used it as
a basis for his original treatment of elimination theory. Later on he gave a version of
the theorem in the article “Beweis und Verschirfung eines Satzes von Kronecker” Math.
Annalen 118 (1942), S. 441-448.

The fact that n + 1 polynomials of n variables are algebraically dependent belongs
to the very beginning of classical algebra and could have been known in the 18th century.
Perron’s Theorem gives a bound on the weight of the algebraic relation between poly-
nomials that makes the classical theorem on algebraic dependence effective. To prove
his result Perron uses an elimination procedure based on linear algebra and Kronecker’s
method of introducing and specializing new variables. We give a detailed presentation
of Perron’s proof in Section 2. Then we give some applications of Perron’s Theorem
to Bézout’s type estimates. Further applications the reader will find in [3], [6], [8], [9].
Recently Z. Jelonek has given a proof of the effective Nullstellensatz based on Perron’s
Theorem (Z. Jelonek, On the Lojasiewicz exponent and effective Nullstellensatz, to ap-
pear).
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1. Perron’s Theorem

Let K be a field. We will consider polynomials with coefficients in K. The following
theorem is due to O.Perron ([7], Satz 57, S.129).

Theorem 1.1 Let Fy,...,Fy 1y € K[X] be a sequence of n + 1 nonconstant polyno-

mials in n variables X = (X,,...,X,) and let degF; = d; fori = 1,...,n+ 1.

Then there exists a nonzero polynomial P = P(Y) € K][Y] in n + 1 variables
= (Y1,...,Y,41) such that

(@) P(F1,...,Fay1) =0,
(b) if weightY; =d; fori =1,... ,n+ 1 then weight P < d; N SR

A polynomial P satisfying the assumptions (a) and (b) will be called Perron’s relation
between F1,..., F,y;. Let us recall here that if weightY; = d; fori = 1,...,n+ 1
then weight(cY;™* .. :jﬁf‘) =aid; + ...+ apt1dpy1 (if c € K*) and the welght ofa
nonzero polynomial P is, by definition, equal to the maximum of weights of monomials
appearing in P with a nonzero coefficient. Let A = {(ay,...,a,41) € N : dia; +

..t dnt18n41 < di...dpy1} Then Perron’s relation P between Fy,...,Fhy1 canbe
written in the form

P(Y1,...,.Yo) = Y Capan Y YT
(al,...,an+1)€A
Note that
Hn+ld
deg P < 1M=L < (max™Hld,
g min™*1d, ( )

The proof of Perron’s theorem we give in Section 2 of this note. The problem of finding
Perron’s relation reduces to solving a system of linear homogeneous equations. To see
this let us consider a collection of new variables

C = (Caly---yan+l . (al, .. .,an+1) E A) .

Let A* = {(b1,...,b,) € N™: bi+...+b,<di...dps1}. Then

a1 An+1 __ b b,
Z Cal’-~-’an+1F1 s ’Fn+1 - Z Lbl,--.,bn (C)X11 .. 'X'n
(al,...,an+1)€A (bl,...,bn)EA*

in the ring K[C, X]. Clearly the polynomials Ly, .. ;, (C) are linear and homogeneous
and we have
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Property 1.2 A polynomial P = Z(al,---,an+1)€A Cayyosanir Y10 - - Y,f_i’ii"l is Per-
ron’s relation between F1,...,F, 1 if and only if the collection ¢ = (cas,....an 41 -

(a1,...,8n11) € A) is a nonzero solution of the system of linear homogeneous equa-
tions Ly, .. 4. (C) =0, (b,...,b,) € A*.

In general Perron’s relation is not uniquely determined by the given sequence of poly-
nomials. If the sequence Fi,...,F,4; contains n algebraically independent polyno-
mials then there is a unique irreducible polynomial (up to a constant factor in K*)
Py = By(Y1,...,Yp41) such that Py(Fy, .. ., Fny1) = 0. We call Py the minimal poly-
nomial of F1, ..., Fy4;. Let us note the following simple

Corollary 1.3 Suppose that the sequence F, ..., F,., contains n algebraically inde-
pendent polynomials. Then the minimal polynomial of F1, . . . F, 11 is Perron’s relation
between Fy, ... F, ;.

Proof. Let P be a Perron’s relation between Fy, ... » Fn+1. Then Py divides P and we
get weight Py < weightP < d; ...d,q1.

Corollary 1.4 Suppose that the polynomials F1, . . ., F,, € K[X | of degreed,, ..., d, >
0 are algebraically independent. Let G € K[Y1,...,Y,] and H = G (Fi,...,Fy). Then
weight G < ([T, d;) deg H.

Proof. Set P(Y1,...,Yny1) = Yat1 — G(Y4,...,Yy). Then P is the minimal poly-
nomial of F,...,Fy, H. By Corollary 1.3 we get weight P < ([]7, d;)(deg H).
On the other hand weight P = max{weightY,, weight G} and consequently we get
weight G < weight P < ([]1_, d;)(deg H).

2. Proof of Perron’s Theorem

Let Fy, ..., F;, be polynomials in n variables X = (X1,..., Xp)of degreed,,...,d, >
0 with coefficients in an extension L of the field K.

Proposition 2.1 Suppose that the coefficients of these polynomials are algebraically in-
dependent over K. Then for every nonconstant polynomial G = G(X) € L[X] there
exists a family of polynomials

Grl,...,'rn(Yl,---,Yn)a Ogri<d,-fori:1,..:,n

such that

@ G=3Gr,..rn(Fry...,F)X .. X0,
(b) if weightY; = d; fori =1,...,n then weightG,, . .. +r1+...+7, < degG.

Proof. It suffices to check that for e\}ery N > 0 the family
" F~ X[V XM

where 0 <7; <d;fori=1,...,nand 37 | a;d; + > 7 < N is alinear basis of
the space L[X]y = {G € L[X] : degG < N}. For any sequence (li,...,l,) € N"
we put
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Qu,.t, = F .. Fi X1 Xn

where a; and r; are determined by the conditions I; = a;d; + 75, 0 < r; < d;. Clearly
the mapping (ly,...,ln) — (a1,...,an,71,...,7,) induces a bijection of the sets
{0 ln) s 0 i < NYand {(a1, ..., Gny 1y oy Tn) = Db, aidi + Yot <
Nand0 < r; < d;fori = 1,...,n}. Therefore it suffices to show that the family
(Qu,...1. * 2y ls < N) is a linear basis of L[X]x. This follows from the following
observations:

1. Qu,...1, € L[X]is of degree } .,

2. the coefﬁ01ents of Qiy,...1, lie 1n the ring R of coefficients of polynomials
Fi,...,Fp. f G - Gisa spe01allzat10n of R[X] in K[X] such that F; =
Xfl, By =X then Q. 4, = X' .. X!,

3. If Dis the determmant of the famﬂy (Qll,_“,ln : Yo 1 li < N) with respect to
the linear basis (X{* ... X}k : 37 k; < N) of L[X]y (we consider N with
lexicographic order) then D # 0 and consequently D # 0.

Proposition 2.2 Suppose that the coefficients of the polynomials Fi, ..., F, are alge-
braically independent over K. Let d = []._; d;. Then for every polynomial Foi of de-
gree dnyy > O there exists a polynomial P = Y2, + Zf_l P(Y1,...,Y, )Yd 1 such
that P(Fy,...,Fy,F,11) = 0 and weight P < Hn"' d; provided weightY; = d; for
1=1,...,n + 1.

Proof. Let My = 1, ..., Mg_; = X{il_l...X,‘,f"‘l be a sequence of monomials
X' XM 0<r;<difori=1,...,n. By Proposition 2.1 there exist polynomials
]Dij = Pij (Yi, ceey Yn) such that

(@) MiFniy =350 Py(F1,...,F)M, fori =0,...,d—1,
(b) if weightY; = d,; fori =1,...,n then weight P;; +deg M; < deg M;+dp41 .

By Cramer’s rule we get
(c) det(P;;(F,...,F,) — 645Fn41) = 0.

Let P(Yi, ... n+1) = ( 1)ddet(Pw (Yi, ce ,Yn) - (Sinn+1). Then P = Y¢ ntl T
St P, .., Y)Y i1 and P(Fy,..., Fp, Fopg) = 0. Let weight Yoty = dpys.
To estimate weight P set Pw = PZJ 611 Yn+1 By (b) we have weight Pm <dnp41 +
deg M; — deg M; and we1ght(:I:P0 do - Pa1js ) < (dnss + deg My — deg M, )+
. +H(dns1 + deg My_; — deg M] _ ) = dptid = [ d; for any permutation
(Jos---sda-1) of (0,1,...,d — 1). Consequently weight P = weight(d" £ P j, -
Py 1j,.,) < H"+1 d;. From Proposition 2.2 it follows that Perron’s Theorem is true
for polynomials with algebraically independent coefficients. This implies the theorem in
the general case. To see this let us fix a sequence of positive integers dy,...,dp41 > 0
andlet A = {(a1,...,an41) € N™*1: $" 1 6,d, < d; ...d,41}. For any sequence
of polynomials Fy,..., F,,; with degree di,y...,dny1 we deﬁne M(Fy,...,Foy1)

to be the matrix of the family (F{*...Fit" :  (a1,...,an41) € A) with re-
spect to the linear basis (X[ ... Xk . > ki <di...dyy1). Perron’s Theorem
is true for Fy, ..., Fyyq if and only if the polynomials F% .. En3t of degree less
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than or equal to H?:Jrll d; are linearly dependent which is equivalent to the condition
rank M (Fy,...,Fyy1) < card A.

If F1...,Fy41 are polynomials with algebraically independent coefficients then
rank M (F1,. .., Fpt1) < card A by Proposition 2.2. Take specializations F1, ..., F, .,
of the polynomials F1,...,Fyy1. Then M(Fy,...,Fpyq) = M(Fy,...,F,1,) and
consequently rank M (Fi,...,F,41) < card A which proves Perron’s Theorem for
Fl,...,Fn+1.

3. Polynomial Automorphisms

A polynomial map over K is by definition a sequence of polynomials F' = (Fy,...,
Fy,) with coefficients in K. We say that F'is a polynomial automorphism if there exist
Gi1,...,Gn € K[Y1,...,Y,) such that G;(F1(X),..., Fo(X)) = X; fori=1,...,n.
We write F~! = (G4, ..., G,). For any polynomial mapping F' = (Fy, ..., F,) we put
deg F' = max?_, (deg F;).

As a first application of Perron’s Theorem we give a proof of the following known
result (see [2], [4], [9], [10]).

Theorem 3.1 (on the degree of the inverse of an automorphism)
Let F = (Fy,..., Fy) be a polynomial automorphism over K. Then

deg F~! < (deg F)™ 1 .
Proof. Let d; = degF; fori = 1,... ,n; Obviously the polynomials Fi, ..., F), are
algebraically independent. Applying Corollary 1.4 to relations G; (F1,...,F,) = X; we
get weight G; < [T, d; and consequently

weight G _ [T, d;
min(d;) — min(d;)

degG; < < (deg F)" ! .

Example 3.2 Take F' = (X1,Xy + X¢,..., X, + X2_,). Then F is a polynomial
automorphism and deg F'~! = (deg F))"L.

4. Bézout’s Inequality

Let K be a field (we don’t assume K to be algebraically closed!) and let F,...,F, €
K[X] = K[X3,...,X,] and a € K™ We say that a is a nondegenerate solution of
the system of equations F; = 0,1 < i < n if Fj(a) = 0 fori = 1,...,n and if the
determinant det(0F;/0X;) is nonzero at a. Using Perron’s Theorem we will prove the
following

Theorem 4.1 (Bézout’s inequality)
Let i, ..., F, € K[X] be polynomials of degree di, . .. ,dn >
of nondegenerate solutions of the system of equations F; = 0, 1

H?:l d”f

0. Then the number
< 1 < nis at most
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Proof. Replacing K by an infinite extension we may assume that K is infinite. Let
ai, ..., as be nondegenerate solutions of the system of equations F; = 0,1 < ¢ < n and
let Fiop1 = c1.X1 + ... + ¢, X, be a linear form such that the elements Froii(ag), k =
1,...,s are pairwise different. Let P = P(Yy,...,Yp1) € K[Y1,...,Yn41] be the
minimal polynomial of Fy,..., F,; (note that Fi, ... , Fy, are algebraically indepen-
dent since its Jacobian determinant does not vanish). Then P = aq (Ya,..., Yn)Y,;ﬁil +
oo tags(Y1,...,Y,,) is of degree d* > 0 and d* < [T, di by Corollary 1.3. Let
Y = (Y1,...,Yy). By the formal inverse function theorem there are formal power series
O (Y) = (261(Y), ..., 84,n(Y)) € K[[Y]], k = 1,...,s such that F;(®;(Y)) = Y;
fori =1,...,nand ®(0) = ay fork = 1,...,s. Let V(YY) = Frpp1(®%(Y)) for
k=1,...,s. Thus we get P(Y,¥U;(Y)) = Ofork = 1,...,s and U (0) # ¥,(0) for
k # 1. Therefore s < d* < d; ...d,, and we are done.

Example 4.2 (Fulton[5])

Let K = R and take (Fl, F,, F3) = (H:il (X1 -i)2 +H;n=1 (Xz -—j)2, X1 X3, X2X3).
Then the polynomials Fy, F, and F are algebraically independent and the system F; =
0,1 <4 < 3 has m? solutions. On the other hand (deg Fi)(deg F»)(deg F3) = 2m -
2 -2 = 8m and Bézout’s inequality does not hold if m > 8. Thus the assumption of
nondegeneracy in the above theorem is essential.

Remark 4.3 A solution a € K™ of a system of equations F; = 0,1 < 4 < n is alge-
braically isolated if the extension K[[X]]/K[[F(a + X)]] is finite. Every nondegenerate
solution is algebraically isolated. Using the Weierstrass Preparation Theorem we could
strengthen Theorem 4.1 as follows: the number of algebraically isolated solutions of the
system F; = 0,1 < ¢ < nisatmost [T}, d;.

5. Geometric Degree

Let K be an infinite field. A polynomial map F = (F1,...,Fy,) over K is separa-
ble if the polynomials Fi, ..., F,, are algebraically independent and the field extension
K(X)/K(F) is separable. We put d(F) = (K(X) : K(F')) and call d(F) the geometric
degree of F'. Letd; = deg F; fori = 1,...,n.

Proposition 5.1 For any separable map F': d(F) < [T, di.

Proof. Since K(X) is separable over K(F') and K is infinite, we can find Cly...,Cn €
K such that F,\; = 1 X1 + ... + cn Xy is a primitive element of the extension
K(X)/K(F).Let P = P(Y1,...,Y,41) be the minimal polynomial of Fi,... F, ;.
Then P is a Perron’s polynomial and d(F) = degy,,, P <di...d,.

Here is another application of Perron’s Theorem.

Proposition 5.2 If F is separable and d(F) > [, d; — ming!_, (d;) then the extension
K[X]/K[F] is integral.

Proof. Replacing the variables X7, ..., X, by their generic linear combinations we may
assume that all X;, 1 < ¢ < n are primitive elements of the extension K(X)/K(F). It
suffices to check that any primitive element of the form Fopi =aXi+...+ e, X,

is integral over K[F]. Let P = P(Y1,...,Yot1) = ao(Y5, ... , Yn)Yfg) + ... be the
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minimal polynomial of Fi,..., F,.;. Then Weight(aoY,flg)) < dj ...d, by Perron’s
Theorem and consequently

weighta, < dy...d, —d(F)
min(d;) ~ min(d;)

degag <

that is ao is a nonzero constant. This proves the proposition.
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