SEVERAL COMPLEX VARIABLES AND ANALYTIC SPACES

On a Theorem of Platte

by

Arkadiusz PŁOSKI and Tadeusz WINIARSKI

Presented by S. LOJASIEWICZ on May 3, 1989

Summary. Given a holomorphic function $f: \mathbb{C}^n \supset U \to \mathbb{C}$ with isolated singularity we study the relation of integral dependence for f over the ring determined by its partial derivatives. We give a simple analytic proof of a theorem of E. Platte.

1. Introduction — Formulation of the theorems. Let U, V be two domains in \mathbb{C}^n such that $0 \in U \cap V$. Let f be a holomorphic function in U and suppose that its gradient defines a proper holomorphic mapping

$$g = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right) : U \to V$$

such that $g^{-1}(0) = \{0\}$. Since $g^{-1}(0) = \{0\}$ and g is proper, it is a μ -sheeted analytic covering with the critical locus $S \subset V$ and μ is the Milnor number of f at 0. Then there exists a unique monic polynomial

$$P(\cdot,T) = T^{\mu} + s_1(\cdot)T^{\mu-1} + \ldots + s_{\mu}(\cdot)$$

with coefficients holomorphic in V such that

$$P(w,T) = \prod_{z \in g^{-1}(w)} (T - f(z)) \text{ for } w \in V \setminus S$$

(for details see [1], Chapter 7). We have, by construction,

$$P(g(z), f(z)) = 0$$
 for $z \in U$.

The aim of this note is to present a simple analytic proof of the following theorem, due to E. Platte.

THEOREM 1 (cf. [4]). The polynomial $P(\cdot,T)$ is irreducible in the ring $\mathcal{O}(V)[T]$ of polynomials with coefficients holomorphic in V.

Proof is given in Section 2 of this note.

The original Platte's Theorem was given in a slight different form which, in the complex case, follows from Theorem 1 by passing to germs. Let's note that recently in [2] it has been given a proof of Platte's result supported on the trace mapping for differentials.

Theorem 2. Let λ be the Lojasiewicz exponent of g at 0, i.e. the smallest number Θ such that $|g(z)| \geq C|z|^{\Theta}$ near 0 with some positive constant C. Then

$$\min\{1/i \text{ ord } s_i : i = 1, \dots, \mu\} = 1 + 1/\lambda,$$

where ord s_i is the degree of the initial homogeneous polynomial for s_i at 0.

Proof. It is proved in [6] that $\min\{1/i \text{ ord } s_i : i = 1, \ldots, \mu\}$ is equal to the largest exponent Θ_0 for the inequality

$$|f(z)| \le C |\operatorname{grad} f(z)|^{\Theta}.$$

On the other hand, in [8] there is shown that $\Theta_0 = 1+1/\lambda$, and so Theorem 2 follows.

Obviously, our theorem implies that ord $s_i \ge i$ (even more: ord $s_i \ge i+1$) for $i=1,\ldots,\mu$. Thus, we get the result from [7]: the minimal polynomial of f gives rise to the integral dependence relation for f over the ideal generated by $\frac{\partial f}{\partial z_1},\ldots,\frac{\partial f}{\partial z_n}$ in the local ring of holomorphic germs at 0.

2. Proof of Platte's Theorem. To prove Theorem 1 we start with two Lemmas.

Lemma 1. The polynomial $P(\cdot,T)$ is irreducible in $\mathcal{O}(V)[T]$ if and only if its discriminant Δ does not vanish identically in V.

Proof. Since the necessary condition is well known, we only prove the sufficient one. Suppose that $P(\cdot,T)=P_1(\cdot,T)P_2(\cdot,T)$ in $\mathcal{O}(V)[T]$ and choose $w\in V\setminus S$ such that $\Delta(w)\neq 0$. Since P(g,f)=0 in $\mathcal{O}(U)[T]$, we may assume $P_1(g,f)=0$. Thus, $P_1(w,f(z))=0$ for $z\in g^{-1}(w)$. Hence $P_1(w,T)$ has degree at least μ , because $\Delta(w)\neq 0$ implies that f has μ different values on the fibre $g^{-1}(w)$. Therefore $P_2(\cdot,T)$ is a unit of $\mathcal{O}(V)$.

LEMMA 2. Let $\gamma = (\gamma_1, \dots, \gamma_n) : W \to \mathbb{C}^n$ be a holomorphic mapping defined in a convex domain $W \subset \mathbb{C}^n$. If

(*)
$$w_1 \frac{\partial \gamma_1}{\partial w_k}(w) + \ldots + w_n \frac{\partial \gamma_n}{\partial w_k}(w) = 0$$
 for $w \in W, k = 1, \ldots, n$,

then $\gamma \mid \mathbb{R}w$ is constant for all $w \in W$.

Proof. The function $\chi = w_1 \gamma_1 + \ldots + w_n \gamma_n$ is holomorphic and (*) gives

$$\gamma_k = \frac{\partial \chi}{\partial w_k}$$
 for $k = 1, \dots, n$.

Thus

$$w_1 \frac{\partial \chi}{\partial w_1} + \ldots + w_n \frac{\partial \chi}{\partial w_n} = \chi$$

and differentiating gives

$$w_1 \frac{\partial^2 \chi}{\partial w_k \partial w_1} + \ldots + w_n \frac{\partial^2 \chi}{\partial w_k \partial w_n} = 0$$
 for $k = 1, \ldots, n$.

By symmetry of partial derivatives we obtain equalities

$$w_1 \frac{\partial \gamma_k}{\partial w_1} + \ldots + w_n \frac{\partial \gamma_k}{\partial w_n} = 0$$
 for $k = 1, \ldots, n$

which imply that the derivative of $t \to \gamma(wt)$ vanishes identically on its domain, and so the lemma is proved.

Proof of Theorem 1. According to Lemma 1 we have to check that the discriminant of the polynomial $P(\cdot,T)$ does not vanish identically on V. To do it, let us choose a point $b \in V \setminus \{0\}$ such that the interval $(0,b] = \{tb: t \in (0,1]\} \subset V \setminus S$. Since b lies outside of the critical locus S, we have

(i) $g^{-1}(b) = \{a_1, \dots, a_{\mu}\}$, where $a_i \neq a_j$ for $i \neq j$,

(ii) there exsists an open convex neighbourhood $W \subset V \setminus S$ of b such that $g^{-1}(w) = U_1 \cup \ldots \cup U_n$, where U_1, \ldots, U_n are pairwise disjoint open connected sets and $g \mid U_i : U_i \to W$ is a biholomorphic mapping, for $i = 1, \ldots, \mu$.

Let $\varphi_i = (g \mid U_i)^{-1} : W \to U_i$. The polynomial

$$T^{\mu} + \sum_{i=1} (s_i \mid W) T^{\mu-i}$$

has the roots $f \circ \varphi_1, \ldots, f \circ \varphi_{\mu}$. If $f \circ \varphi_1, \ldots, f \circ \varphi_{\mu}$ are pairwise different then its discriminant does not vanish identically in W. Then to get the contradiction suppose that there exists $i \neq j$ such that

$$(1) f \circ \varphi_i = f \circ \varphi_j.$$

Differentiating (1) and making use of the relations $(\operatorname{grad} f) \circ \varphi_i = (\operatorname{grad} f) \circ \varphi_j = \operatorname{identity}$, we obtain

(2)
$$w_1 \frac{\partial (\varphi_{i1} - \varphi_{j1})}{\partial w_k} + \ldots + w_n \frac{\partial (\varphi_{in} - \varphi_{jn})}{\partial w_k} = 0$$
 for $w \in W, \ k = 1, \ldots, n$

Conditions (2), by Lemma 2, imply that the mapping

$$\varphi_i - \varphi_j = (\varphi_{i1} - \varphi_{j1}, \dots, \varphi_{in} - \varphi_{jn})$$

is constant on every vector line through origin. In particular, we obtain

(3)
$$\varphi_i(w) - \varphi_j(w) = \varphi_i(b) - \varphi_j(b) = c \neq 0 \text{ for } w \in W \cap (0, b].$$

Since $g^{-1}(0) = \{0\}$, ther exists $b' \in (0,b)$ such that the fiber $g^{-1}(b')$ lies in the ball $|z| \leq \frac{1}{4}|c|$.

Let $\alpha(t) = tb' + (1-t)b$ for $t \in [0,1]$. Since $\alpha(t)$ lies outside of the critical locus S, there exist the unique lifted analytic arcs $\alpha_l : [0,1] \to U \setminus g^{-1}(S)$ such that $g \circ \alpha_l = \alpha$ and $\alpha_l(0) = a_l$ for $l = 1, \ldots, \mu$. By (3) we have

$$\alpha_i(t) - \alpha_j(t) = c$$
 for $t \in [0,1]$ and $|c| = |\alpha_i(1) - \alpha_j(1)| \le 1/2|c|$ contradicts $c \ne 0$. Consequently (1) does not hold and Theorem 1 is proved.

3. Observations and another statement of Platte's theorem. In order to put the irreducibility of the polynomial $P(\cdot,T)$ in a more general context, suppose that U is an irreducible analytic subset of \mathbb{C}^N of dimension n and that, as before, V is a domain in \mathbb{C}^n . For a given μ -sheeted analytic covering $g:U\to V$ and $f\in\mathcal{O}(U)$ the polynomial $P(\cdot,T)$ can be constructed by the same way as in Section 1. The mapping

$$g^*: \mathcal{O}(V) \ni h \to h \circ g \in \mathcal{O}(U)$$

is an injective homomorphism of two domains. Let $L = \operatorname{Fr} \mathcal{O}(U)$ (the field of fractions of $\mathcal{O}(U)$) and let $K = \operatorname{Fr}(g^*(\mathcal{O}(V)))$. Since the ring $g^*(\mathcal{O}(V))$ (isomorphic to $\mathcal{O}(V)$) is normal, the monic polynomial

$$P^{0}(u,T) = T^{\mu} + s_{1}(g(u))T^{\mu-1} + \ldots + s_{\mu}(g(u))$$

is irreducible in $g^*(\mathcal{O}(V))[T]$ if and only if it is irreducible in K[T]. Then, as in Lemma 1, and by a well-known field extensions properties (cf. [9], Chapter 6, p. 107) one gets

Proposition 1. The following four conditions are equivalent

- (a) The polynomial $P(\cdot,T)$ is irreducible in $\mathcal{O}(V)[T]$.
- (b) The discriminant of $P(\cdot,T)$ does not vanish identically on V.
- (c) There exists a $w \in V$ such that f has μ different values on the fibre $g^{-1}(w)$.
 - (d) f is a primitive element of the field extension $K \subset L$.

According to Proposition 1, Theorem 1 can be stated as follows: the function f is a primitive element of the field extension $\operatorname{Fr}(\operatorname{grad} f)^*\mathcal{O}(V) \subset \operatorname{Fr} \mathcal{O}(U)$.

INSTITUTE OF APPLIED MATHEMATICS, TECHNICAL UNIVERSITY OF KIELCE, 1000-LECIA PAŃSTWA POLSKIEGO 7, 26-014 KIELCE (A.P.)

(INSTYTUT MATEMATYKI STOSOWANEJ, POLITECHNIKA ŚWIĘTOKRZYSKA)

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY, REYMONTA 4, 30-059 KRAKÓW (T.W.)

(INSTYTUT MATEMATYKI, UNIWERSYTET JAGIELLOŃSKI)

REFERENCES

- [1] H. Grauert, R. Remmert, Coherent analytic sheaves, Springer-Verlag, Berlin 1984.
- [2] M. Kersken, U. Storch, Some applications of the trace mapping for differentials, Topies in Algebra, Banach Center Publ., PWN, Warszawa 26 (1990) 141-148.
- [3] P. Kuhn, Grad einer analitischen Funktion über ihnen partiellen Ableitungen, Dissertation, Ruhr Universität, Bochum 1980.
- [4] E. Platte, Jacobi-Algebra und Blätterzahl von analytisch-verzweighten Überlagerungen isolierten Hyperflächen Singularitaten, Archiv. Math., 39 (1982) 121-125.
- [5] E. Platte, Differentiale Methoden in der lokalen Algebra, Osnabrücken Schriften zur Mathematik, 10 (1988).
- [6] A. Płoski, Multiplicity and the Lojasiewicz exponent, Singularities, Banach Center Publications, PWN, Warsaw 20 (1988) 353-364.
- [7] G. Scheja, Über ganz-algebraische Abhängigkeit in der Ideal theorie, Comm. Math. Helv., 45 (1970) 384-390.
- [8] B. Teissier, Varietés polaires: I-Invariants polaires des singularités d'hypersurfaces, Invent. Math., 40 (1977) 267-292.
 - [9] H. Whitney, Complex analytic varieties, Addison-Wesley, London 1972.