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THE �LOJASIEWICZ EXPONENT OF AN ISOLATED WEIGHTED
HOMOGENEOUS SURFACE SINGULARITY

TADEUSZ KRASIŃSKI, GRZEGORZ OLEKSIK, AND ARKADIUSZ P�LOSKI

(Communicated by Mei-Chi Shaw)

Abstract. We give an explicit formula for the �Lojasiewicz exponent of an iso-
lated weighted homogeneous surface singularity in terms of its weights. From
the formula we get that the �Lojasiewicz exponent is a topological invariant of
these singularities.

1. Introduction

Let f = f(z1, . . . , zn) ∈ C{z1, . . . , zn} be a convergent power series defining an
isolated singularity at the origin 0 ∈ Cn; i.e. f(0) = 0 and the gradient of f ,

∇f :=
(

∂f

∂z1
, . . . ,

∂f

∂zn

)
: (Cn,0) → (Cn,0),

has an isolated zero at 0 ∈ C
n. The �Lojasiewicz exponent L0(f) of f is by definition

the smallest θ > 0 such that there exists a neighbourhood U of 0 ∈ Cn and a
constant c > 0 such that

|∇f(z)| � c |z|θ for all z ∈ U.

B. Teissier proved that L0(f) + 1 is equal to the maximal polar invariant of the
singularity f ([T], Corollary 2). In particular L0(f) depends only on the analytical
type of the germ {f = 0} (even more: L0(f) is an invariant of the “c-cosécance”
introduced in [T]). It is an open question whether L0(f) is a topological invariant
of an isolated singularity f. Let Suff0(f) be the C0-degree of sufficency of f , i.e.
the smallest integer r such that f is topologically equivalent to f + g for all g with
ord g ≥ r + 1. Then Suff0(f) = [L0(f)] + 1 ([T], Theorem 8), where [a] is the
integral part of a ∈ R. The �Lojasiewicz exponent can be calculated by means of
analytic paths ϕ(t) = (ϕ1(t), . . . , ϕn(t)) ∈ C{t}n, ϕ(0) = 0, ϕ(t) �= 0 in C{t}n. If
ord ϕ := infn

i=1 ord ϕi, then

L0(f) = sup
ϕ

ord((∇f) ◦ ϕ)
ord ϕ

(by the Curve Selection Lemma; see also [L-JT]). In the two-dimensional case there
are many explicit formulas for L0(f) in various terms (see [KL], [CK1], [CK2], [L]).
In this paper we investigate the problem of determining the �Lojasiewicz exponent
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for weighted homogeneous isolated singularities. Let us recall that if (w1, . . . , wn)
is a sequence of n rational numbers (weights) such that wi ≥ 2 for i = 1, . . . , n, then
a polynomial f ∈ C[z1, . . . , zn] is called weighted homogeneous of type (w1, . . . , wn)
if f may be written as a sum of monomials zα1

1 . . . zαn
n with

α1

w1
+ . . . +

αn

wn
= 1.

For another definition of weighted homogeneous polynomials see the Appendix.
The set of weights {w1, . . . , wn} of a weighted homogeneous polynomial f defin-

ing an isolated singularity is an analytic invariant of the germ {f = 0} [S]. Many
topological invariants of weighted homogeneous isolated singularities are expressed
in terms of weights: for instance, the Milnor number µ0(f) of f and the character-
istic monodromy polynomial ∆f (t) [MO], and in the case of weighted homogeneous
isolated surface singularities, the multiplicity of f [Y], the fundamental group π(Kf )
of the link of f and the minimal resolution of f [OW].

In this note we will give a formula for the �Lojasiewicz exponent of weighted
homogeneous isolated surface singularities in terms of its weights. Precisely, the
�Lojasiewicz exponent is equal to the maximum of its weights minus one. As a
corollary we obtain that in this class of singularities L0(f) is a topological invariant.

Estimations of the �Lojasiewicz exponent for quasi-homogeneous isolated singu-
larities in the real and complex cases are in a recent preprint by Haraux and Pham
[HP]. Estimations in the general case can be found in [Lt], [F], [P1], [A].

2. Results

The main result of this paper is the following:

Theorem 1. Let f = f(z1, z2, z3) be a weighted homogeneous polynomial of type
(w1, w2, w3) defining an isolated singularity at the origin 0 ∈ C3. Then

(2.1) L0(f) =
3

max
i=1

(wi − 1).

An analogous formula also holds in the case n = 2 (Corollary 4). In the general
case we have only the inequality “≤”in (2.1); the equality holds under additional
assumptions (Propositions 1 and 2 in Section 3).

The proof of the above theorem is given in Section 5.

Corollary 1. Suff0(f) =
[
max3

i=1(wi)
]
.

Since weights are a topological invariant of weighted homogeneous surface sin-
gularities [Y], Theorem B, we obtain

Corollary 2. The �Lojasiewicz exponent L0(f) of weighted homogeneous isolated
surface singularities f is a topological invariant.

It means that if f , f ′ are weighted homogeneous isolated surface singularities
and (C3, V (f),0) is homeomorphic to (C3, V (f ′),0), then L0(f) = L0(f ′).

From Corollary 1 we easily get

Corollary 3. deg f ≤ Suff0(f).

The above inequality may be strict.
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Example 1. Let a, b be integers such that b ≥ 2 and a
2 > b − 1. The polynomial

f = za
1z2+zb

2 +z2
3 is of type ( ab

b−1 , b, 2) and defines an isolated singularity at 0 ∈ C3.

Then deg f = a + 1 and Suff0(f) =
[

ab
b−1

]
> deg f.

The crucial role in the proof of the main theorem is played by the following result
concerning arbitrary isolated surface singularities.

Theorem 2. Let f = f(z1, z2, z3) be an isolated surface singularity and

V

(
∂f

∂z2
,

∂f

∂z3

)
⊂ V (z1).

Then

z1 ∈
(

∂f

∂z2
,

∂f

∂z3

)
in C{z1, z2, z3}.

The proof of the above theorem is given in Section 4.
To generalize Theorem 1 to the n-dimensional case it is enough to prove the last

theorem in the n-dimensional case in the following formulation.

Problem 1. Let f = f(z1, . . . , zn) be an isolated singularity and

V

(
∂f

∂z2
, . . . ,

∂f

∂zn

)
⊂ V (z1).

Then

z1 ∈
(

∂f

∂z2
, . . . ,

∂f

∂zn

)
in C{z1, . . . , zn}.

Remark 1. Theorem 1 implies that the maximal polar invariant of a weighted
homogeneous isolated surface singularity is equal to its maximal weight.

3. Upper bound for the �Lojasiewicz exponent

of weighted homogeneous isolated singularities

In this section we will prove

Proposition 1. Let f ∈ C{z1, . . . , zn} be a weighted homogeneous isolated singu-
larity of type (w1, . . . , wn) at 0 ∈ Cn. Then

L0(f) ≤ n
max
i=1

(wi − 1).

Remark 2. If f is a homogeneous isolated singularity of degree d > 1, then L0(f) =
d − 1 ([P2], Lemma 2.4). In this case we have wi = d for i = 1, . . . , n.

We will get Proposition 1 from an estimation of the �Lojasiewicz exponent for
semi-weighted homogeneous mappings given in [P2] (see also [F], Theorem 3.2).
First we recall the notion of the �Lojasiewicz exponent for holomorphic mappings
with an isolated zero.

Let f = (f1, . . . , fn) ∈ C{z1, . . . , zn}n define a germ of the holomorphic mapping
f : (Cn,0) → (Cn,0) with an isolated zero at 0 ∈ Cn. The �Lojasiewicz exponent
l0(f) of f is by definition the smallest θ > 0 such that there exist a neighbourhood
U of 0 ∈ Cn and a constant c > 0 such that

|f(z)| � c |z|θ for all z ∈ U.

Clearly L0(f) = l0(∇f).
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Lemma 1. Let fi for i = 1, . . . , n be a polynomial whose support supp fi lies in the
hyperplane q1α1 + . . . + qnαn = di, where q1, . . . , qn, di > 0 are integers. Suppose
that f = (f1, . . . , fn) has an isolated zero at 0 ∈ C

n. Then

l0(f) ≤ maxn
i=1(di)

minn
i=1(qi)

.

Proof. See [P2], Proposition 2.2. �

Now we can give

Proof of Proposition 1. Let q1, . . . , qn and d be positive integers such that qiwi = d
for i = 1, . . . , n. Since f is an isolated singularity we have ∂f

∂zi
�= 0 for i = 1, . . . , n.

Obviously supp
(

∂f
∂zi

)
lies on the hyperplane q1α1 + . . . + qnαn = d − qi. Using

Lemma 1 we get

L0(f) = l0(∇f) ≤ maxn
i=1(d − qi)

minn
i=1(qi)

=
n

max
i=1

(
d

qi
− 1

)
=

n
max
i=1

(wi − 1) .

�

Let f ∈ C{z1, . . . , zn} be an isolated singularity and let l =
∑n

i=1 aizi be a
linear nonzero form. A (local) polar curve of f related to l is the germ Γl(f) of the
analytic set given by the equations

∂(f, l)
∂(zi, zj)

= 0, 1 ≤ i < j ≤ n,

near the origin. It is easy to check that dim Γl(f) = 1. In particular Γzk
(f) is given

by the equations

(3.1)
∂f

∂z1
= · · · =

∂f

∂zk−1
=

∂f

∂zk+1
= · · · =

∂f

∂zn
= 0.

Proposition 2. Let f ∈ C{z1, . . . , zn} be a weighted homogeneous isolated singu-
larity of type (w1, . . . , wn). Suppose that wk = maxn

i=1(wi) and Γzk
(f) �⊂ V (zk).

Then

L0(f) =
n

max
i=1

(wi − 1).

Proof. By Proposition 1 we have

L0(f) ≤ wk − 1.

To check that

L0(f) ≥ wk − 1

we choose an open neighbourhood U of 0 ∈ C
n such that if ∇f(z) = 0, z ∈ U, then

z = 0. From the assumption Γzk
(f) �⊂ V (zk) it follows that the system of equations

(3.1) has in U a solution a = (a1, . . . , an) such that ak �= 0. Let q1, . . . , qn and d
be integers such that qiwi = d for i = 1, . . . , n. Set

ϕ(t) = (a1t
q1 , . . . , antqn).
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Since supp
(

∂f
∂zi

)
lies on the hyperplane q1α1 + . . . + qnαn = d − qi we get

∂f

∂zi
(ϕ(t)) = td−qi

∂f

∂zi
(a) = 0 for i �= k,

∂f

∂zk
(ϕ(t)) = td−qk

∂f

∂zk
(a) �= 0.

Therefore we get

L0(f) ≥ ord((∇f) ◦ ϕ(t))
ord ϕ(t)

=
ord( ∂f

∂zk
(ϕ(t)))

ord ϕ(t)
=

d − qk

qk
= wk − 1.

�

The above propositions give the formula for the �Lojasiewicz exponent in a simpler
two-dimensional case.

Corollary 4. Let f ∈ C{z1, z2} be a weighted homogeneous isolated singularity of
type (w1, w2) at 0 ∈ C2. Then

L0(f) =
2

max
i=1

(wi − 1).

Proof. Assume that w1 ≤ w2. If V
(

∂f
∂z1

)
�⊂ V (z2), then the corollary follows from

Proposition 2. If V
(

∂f
∂z1

)
⊂ V (z2), then z2 = A ∂f

∂z1
in C{z1, z2}. In fact, by the

local Hilbert Nullstellensatz zp
2 = A ∂f

∂z1
in C{z1, z2} for some positive integer p.

Assume that p is the smallest possible. Then z2 does not divide A. Since C{z1, z2}
is a unique factorization domain we get ∂f

∂z1
= zp

2B, B(0, 0) �= 0. Hence there exist
C ∈ C{z1, z2} and g ∈ C{z2}, g(0) = 0, such that

f (z1, z2) = zp
2C (z1, z2) + g (z2) in C{z1, z2}.

If we had p > 1, then by condition ∂f
∂z2

(0, 0) = 0 we would obtain g′(0) = 0. This
would imply

∂f

∂z1
(z1, 0) = 0 and

∂f

∂z2
(z1, 0) = 0,

which contradicts the assumption that f is an isolated singularity. So p = 1, i.e.
z2 = A ∂f

∂z1
in C{z1, z2}. Hence ∂2f

∂z1∂z2
(0, 0) �= 0. This implies that the monomial

cz1z2 appears with a nonzero coefficient c �= 0 in the Taylor expansion of f. We
then get 1

w1
+ 1

w2
= 1, which implies w1 = w2 = 2 (by definition of weighted

homogeneous polynomials w1, w2 ≥ 2). Thus f is a homogeneous form of degree 2
and L0(f) = 1 = max2

i=1(wi − 1) by Remark 2. �

Remark 3. It is well known that if f = f(z1, z2) defines an isolated curve singularity,
then the Milnor number µ0(f) and the �Lojasiewicz exponent L0(f) are topologi-
cal invariants of the germ {f = 0} ([T]). Moreover, if additionally f is weighted
homogeneous of type (w1, w2), then by [MO]

µ0(f) = (w1 − 1)(w2 − 1),

and by Corollary 4
L0(f) = max ((w1 − 1), (w2 − 1)) .
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Hence the set of weights

{w1, w2} =
{

µ0(f)
L0(f)

+ 1,L0(f) + 1
}

is also a topological invariant of the germ {f = 0}.

4. Proof of Theorem 2

Proof. In the sequel we will use the following notation for any P ∈ C{z1, z2, z3}.
Let P = P0 +P1z1 +P2z

2
1 + . . . with Pi ∈ C{z2, z3} for i = 0, 1, 2, . . . . Then we put

P̂ = P1 + P2z1 + . . . . Thus P0 = P (0, z2, z3) and P = P0 + z1P̂ in C{z1, z2, z3}.
Note that (

∂P

∂z2

)
0

=
∂P0

∂z2
and

(
∂P

∂z3

)
0

=
∂P0

∂z3
.

Let us pass to the proof of the theorem. We have to show that there exists a
power series A, B ∈ C{z1, z2, z3} such that

z1 = A
∂f

∂z2
+ B

∂f

∂z3
in C{z1, z2, z3}.

It is easy to check the following three properties:
(1) The system of equations

∂f0

∂z2
=

∂f0

∂z3
= f1 = 0

has an isolated solution z2 = z3 = 0 near the origin 0 ∈ C2 (otherwise, f
does not define an isolated singularity).

(2) The analytic set defined by equations

∂f0

∂z2
=

∂f0

∂z3
= 0

near the origin 0 ∈ C
2 is of pure dimension one (since Γz1(f) is of pure

dimension one and lies in {z1 = 0}).
(3) For some integer p > 0

zp
1 = A

∂f

∂z2
+ B

∂f

∂z3
in C{z1, z2, z3}

(by the local Hilbert Nullstellensatz).
Assume that p > 0 in (3) is the smallest possible. Hence A0 �= 0 or B0 �= 0.

Then we have the following fact.

Property 1. A0 �≡ 0 (mod ∂f0
∂z3

) or B0 �≡ 0 (mod ∂f0
∂z2

) in C{z2, z3}.

Proof of Property 1. Suppose that A0 ≡ 0 (mod ∂f0
∂z3

); that is, A0 = Ã0
∂f0
∂z3

in
C{z2, z3}. Then

A = A0 + z1Â = Ã0
∂f0

∂z3
+ z1Â = Ã0

(
∂f

∂z3
− z1

∂f̂

∂z3

)
+ z1Â

= Ã0
∂f

∂z3
+ z1C in C{z1, z2, z3}.
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From (3) we get

zp
1 =

(
Ã0

∂f

∂z3
+ z1C

)
∂f

∂z2
+ B

∂f

∂z3

=
(

Ã0
∂f

∂z2
+ B

)
∂f

∂z3
+ z1C

∂f

∂z2
.

By minimality of p we get Ã0
∂f
∂z2

+ B �≡ 0 (mod z1), and consequently ∂f
∂z3

≡ 0
(mod z1), which implies ∂f0

∂z3
= 0 in C{z2, z3}. Similarly the condition B0 ≡ 0

(mod ∂f0
∂z2

) implies ∂f0
∂z2

= 0 in C{z2, z3}. This proves Property 1. �

From (3) we get

(4.1) A0
∂f0

∂z2
+ B0

∂f0

∂z3
= 0 in C{z2, z3}.

Suppose to the contrary that p > 1. Then differentiating the equality in (3) and
putting z1 = 0 we get

(4.2) A0
∂f1

∂z2
+ B0

∂f1

∂z3
+ A1

∂f0

∂z2
+ B1

∂f0

∂z3
= 0 in C{z2, z3}.

From (2) it follows that we may write

f0 = g0g
k1
1 . . . gkr

r in C{z2, z3},
where ki ≥ 2 for i = 1, . . . , r, r ≥ 1, gi are irreducible and gi does not divide gj in
C{z2, z3} for i �= j. Note that

(4.3) GCD
(

∂f0

∂z2
,
∂f0

∂z3

)
= gk1−1

1 . . . gkr−1
r .

Property 2. There exists an i ∈ {1, . . . , r} such that

∂ (gi, f1)
∂ (z2, z3)

≡ 0 (mod gi).

Proof of Property 2. Using Properties (4.1), (4.3) and Property 1 we check that

A0 �≡ 0
(

mod GCD
(

∂f0

∂z2
,
∂f0

∂z3

))
or

B0 �≡ 0
(

mod GCD
(

∂f0

∂z2
,
∂f0

∂z3

))
.

Therefore there is an i ∈ {1, . . . , r} such that

A0 �≡ 0
(
mod gki−1

i

)
or B0 �≡ 0

(
mod gki−1

i

)
.

We may suppose i = 1. Write f0 = gk1
1 ĝ1 in C{z2, z3}. Obviously ĝ1 �≡ 0 (mod g1) .

Using (4.1) after a simple calculation we get

(4.4) A0

(
k1

∂g1

∂z2
ĝ1 + g1

∂ĝ1

∂z2

)
+ B0

(
k1

∂g1

∂z3
ĝ1 + g1

∂ĝ1

∂z3

)
= 0 in C{z2, z3}.

Hence for each integer m ≥ 0

A0 ≡ 0 (mod gm
1 ) if and only if B0 ≡ 0 (mod gm

1 ) .
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Therefore we can write A0 = A′
0g

m1
1 and B0 = B′

0g
m1
1 , where 0 ≤ m1 < k1 − 1 and

A′
0 �≡ 0 (mod g1) , B′

0 �≡ 0 (mod g1) . From (4.1) and (4.2) we get

(4.5) A′
0

∂g1

∂z2
+ B′

0

∂g1

∂z3
≡ 0 (mod g1)

and

(4.6) A′
0

∂f1

∂z2
+ B′

0

∂f1

∂z3
≡ 0 (mod g1) .

Using Cramer’s rule to (4.5) and (4.6) we get

A′
0

∂ (g1, f1)
∂ (z2, z3)

≡ 0 (mod g1),

and Property 2 follows since A′
0 �≡ 0 (mod g1) and g1 is irreducible. �

We omit the simple proof of the next property.

Property 3. Let P, Q ∈ C{x, y} be power series in two variables x, y without
constant term. Let P be irreducible and let ∂(P,Q)

∂(x,y) ≡ 0 (modP ). Then Q ≡ 0
(mod P ).

Now we can finish the proof of Theorem 2. The assumption p > 1 implies by
Properties 2 and 3 that f1 vanishes on a branch V (gi) of the curve V

(
∂f0
∂z2

, ∂f0
∂z3

)
.

This contradicts property (1). Therefore p = 1, which ends the proof. �

5. Proof of Theorem 1

Let f = f(z1, z2, z3) be a weighted homogeneous polynomial of type (w1, w2, w3)
defining an isolated singularity at the origin 0 ∈ C

3. We may assume that w1 =
max(w1, w2, w3). If Γz1(f) �⊂ V (z1), then L0(f) = w1 − 1 by Proposition 2. Sup-
pose then that Γz1(f) ⊂ V (z1). By Theorem 2 there exists a power series A, B ∈
C {z1, z2, z3} such that z1 = A ∂f

∂z2
+ B ∂f

∂z3
. Differentiating and putting z1 = z2 =

z3 = 0 we obtain
∂2f

∂z1∂z2
(0) �= 0 or

∂2f

∂z1∂z3
(0) �= 0.

Thus the support supp f contains point (1, 1, 0) or (1, 0, 1). Hence w1 = w2 = 2
or w1 = w3 = 2. Since w1 = max(w1, w2, w3), then w1 = w2 = w3 = 2 and f is
homogeneous of degree 2. Consequently L0(f) = 1 = w1 − 1 by Remark 2, and the
theorem is proved.

Remark 4. Let f = f0 + f1z1 + f2z
2
1 + . . . with fi ∈ C {z2, z3} for i = 0, 1, . . .

be an isolated surface singularity such that Γz1(f) ⊂ V (z1). From the proofs of
Theorems 1 and 2 it follows that f0 has a multiple factor and ord f1 = 1. In
particular ord f = 2.

6. Appendix

There is another (weaker) definition of a weighted homogeneous polynomial. A
polynomial f ∈ C[z1, . . . , zn] is called a weak weighted homogeneous polynomial if
there exist n rational positive numbers (weights) (w1, . . . , wn) such that f may be
written as a sum of monomials zα1

1 . . . zαn
n with

α1

w1
+ . . . +

αn

wn
= 1.
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Observe that we don’t assume here that wi ≥ 2 for i = 1, . . . , n. The weights
are not uniquely determined by the weak weighted homogeneous polynomial. If a
weak weighted homogeneous polynomial f of type (w1, , . . . , wn) defines an isolated
singularity at the origin, then wi > 1 for all i = 1, . . . , n and

µ0(f) =
n∏

i=1

(wi − 1)

([MO], Theorem 1). The class of weak weighted homogeneous polynomials is
broader than the class of weighted homogeneous polynomials. However, we can
extend our main theorem to this class.

Theorem 3. Let f = f(z1, z2, z3) be a weak weighted homogeneous polynomial of
type (w1, w2, w3) defining an isolated singularity at the origin. Then

L0(f) = min

(
3

max
i=1

(wi − 1),
3∏

i=1

(wi − 1)

)
.

Note that if wi ≥ 2 for all i = 1, 2, 3, then max3
i=1(wi − 1) ≤

3∏
i=1

(wi − 1) and we

recover Theorem 1.
In the proof we need the following useful lemma:

Lemma 2. Let f ∈ C{z1, . . . , zn} define an isolated singularity at the origin. Then

L0(f) ≤ µ0(f)

with equality if

(6.1) rk
(

∂2f

∂zi∂zj
(0)

)
≥ n − 1.

Proof. It is well known that the monomials zµ
1 , . . . , zµ

n , µ = µ0(f), belong to the
ideal

(
∂f
∂z1

, . . . , ∂f
∂zn

)
. Whence the inequality L0(f) ≤ µ0(f) follows. If (6.1) holds,

then we may assume, by the splitting lemma, that f = z2
1 + . . . + z2

n−1 + zµ
n . This

obviously implies L0(f) = µ0(f). �

Remark 5. One can prove that the equality L0(f) = µ0(f) implies the inequality
(6.1)

Proof of Theorem 3. We get L0(f) ≤ µ0(f) =
3∏

i=1

(wi − 1) by the Milnor-Orlik

formula. On the other hand our proof of Proposition 1 is valid in the case of
weak weighted homogeneous isolated singularities, and consequently L0(f) ≤
max3

i=1(wi − 1). Summing up we obtain the bound

(6.2) L0(f) ≤ min

(
3

max
i=1

(wi − 1),
3∏

i=1

(wi − 1)

)
.
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To prove the opposite inequality we suppose, to the contrary, that we have strict
“<” inequality in (6.2). Then

L0(f) <
3

max
i=1

(wi − 1),(6.3)

L0(f) <

3∏
i=1

(wi − 1).(6.4)

We may assume that max3
i=1(wi) = w1. Inequality (6.3) implies V

(
∂f
∂z2

, ∂f
∂z3

)
⊂

V (z1) (cf. the proof of Theorem 1). Using Remark 4 we check that, up to a
permutation of variables z2, z3,

f(z1, z2, z3) = azk
3 + bz1z2 + z2

1g(z1, z3),

where g(z1, z3) is a polynomial, ab �= 0, and k ≥ 2. Using Lemma 2 we check that

L0(f) = µ0(f). Since µ0(f) =
3∏

i=1

(wi−1) by the Milnor-Orlik formula, then L0(f) =

3∏
i=1

(wi − 1), which contradicts (6.4). �
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