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Summary. We prove Hilbert’s Nullstellensatz and Max Noether’s Theorem for polynomial
equations with coefficients in the ring of convergent power series.

1. Nullstellensatz for polynomial equations with analytic coefficients. In this
note we shall consider polynomials with coefficients in the ring C{X} of con-
vergent power series in variables X = (X,,..., X - Let F(X, Y) = (F (X, Y),
.. Fy(X, Y))e C{X}[YT" be a sequence of polynomials in variables Y = (Y,
.-, ). We denote by F(X, Y)C{X}[Y] resp. F(X, Y)C{X, Y} the ideal
generated by F,(X, Y),..., Fy(X, Y) in the ring C{X}[Y] resp. in the ring
C{X, Y} and C{X}[Y]/F(X, Y) resp. C{X, Y}/F(X, Y) the corresponding
quotient algebras. In what follows, we denote by U an open neighbourhood
(nbhd) of the origin O € C™ contained in the domains of convergence of all
coefficients of the polynomials F(X, Y), G(X, Y).

THEOREM (1.1). Suppose that there exists an open nbhd U of the origin O € C™
such that for each (x, y)e U x C™ from F(x, y) = 0 follows G(x, y) = 0. Then
there is an integer q > 0 such that G(X, YYeF(X, Y)C{X}[Y].

Proof. We shall get (1.1) from the local version of Hilbert’s Nullstellensatz
(cf. [S] where a simplified proof of this theorem is given). Let us assume first
that F (X, Y),..., Fy(X, Y) and G(X, Y) are homogeneous polynomials in

variables Y. By the local Nullstellensatz we have GX, V)N = i 0/(X,7)
F(X, Y) with (X, Y)e C{X, Y}, o

Write (X, Y) = Y 0 (X, Y) where O is a homogeneous form in Y of
degree k or O = 0. éomparing terms of the same degree, we conclude that

G(X,Y)= ) QW(X, Y)F (X, Y) where

(k,Del



34 - A. Ploski

= {(k, ): degQ{"' +degF, = qdegG},
so G(X, Y)*e F(X, Y)C{X}[Y]. Let us consider now the general case. Let ¥,

be a new variable, ¥ = (Y,, Y) and let P(X, ¥) =) Y3*#* *PW(X, Y) for any
k

polynomial P(X, Y) =) P¥W(X, Y)e C{X}[Y]. Then Px,Y) is a homo-

A~ k ~
geneous form in Y of degree degP and P(X, 1,Y)= P(X,Y) From the
assumption it follows that F(x, §) = 0, (x, ) e UxC"*! implies ¥oG(x, ) = 0.

Hence by the first part of the proof we get [ Y, GX, )= Z P(X, YHF (X, Y)

with P,(X, ¥)e C{X}[Y]. Putting ¥, = 1 we get the theorem Let us note the
followmg corollary of (1.1).

COROLLARY (1.2). Suppose that there exist an open nbhd U of the origin
O € C™ such that the system of equations F(X, Y) = 0 has no solutions in U x C".
Then 1€ F(X, Y)C{X}[Y]

In the sequel the following will be useful.

PROPERTY (1.3). C{X}[Y]J/F(X, Y) is a finite C{X}-module if and only if
for any j = 1,..., n the ideal F(X, Y)C{X}{Y] contains a monic polynomial
H{(X,Y) eC{X}[Y]

The above property follows easily from the well-known properties of
integral extensions. Let us recall that a continuous mapping is finite if it is
closed and has finite fibers. The basic properties of finite mappings are given in
[3]. To abbreviate the notation let us put Ny(F) = {(x, y) e Ux C":F(x, y) = 0}.
We claim

PROPOSITION (1.4). The following two conditions are equivalent:
(i) There is a basis of open nbhds U such that Ny(F) # 0 and the projection
Ny(F)—» U given by pr (x, y) = x is finite.
(i) C{X}[Y)/F(X, Y) is a non-zero finite C{X}-module.
Proof. Assume (ii). By (1.3) the ideal F(X, Y)C{X}[Y] contains monic
polynomials H,(X, Y)(j = 1,..., n). Let H(X, Y) = (H,(X, Y}),..., H,(X, Y)).

We have H(X, Y)C{X}[Y] < F(X, Y)C{X}[Y], so Ny(F) = Ny(H) for
sufficiently small open nbhd U. N ,(F) is a closed and by (1.2) non-empty subset
of N,(H), the projection Ny(H)3(x, y)—>xe U is finite (cf. [3], p. 51). Hence
pri:Ny(F)— U is finite, which proves (i). Let us suppose now that (i) holds.
Using some basic properties of finite mappings (cf. [3], p. 48) we confirm that
(a) N, = {ye C": F(0, y) = 0} is a non-empty finite set, (b) for x € C™ sufficient-
ly near O the solutions of the system of equations F(x, Y) = 0 lie in a given
nbhd of the set N,. It follows that for any ye N, the system of equations
X =0, F(X, Y+y) = 0 has near 0 C™"" only the solution X =0, Y =0, so
by the local Nullstellensatz the homomorphism C{X} - C{X, Y}/F(X, Y+y)
is quasi-finite. Consequently it is finite (cf. [2], p. 88) and the ideal F(X, Y+y)
C {X Y} contains distinguished polynomials HY(X, Y)(j = 1,..., n) (cf. [2],
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p. 93). Let Hy(X, Y) = I1 HY(X, Y, .— ;). Using the properties (a) and (b) we

check that the polynom)ieals H (X, j) vanish on Nj(F) provided the nbhd U is
sufficiently small, so by (1.1) there is an integer ¢ > 0 such that H,(X, Y)%e
F(X, Y)C{X}[Y] (= 1,..., n). According to (1.3) this implies (i).

2. Euclidean and Weierstrass Division. Let H(Y) = (H,(Y,),..., H,(Y,))
e A[Y]" be a sequence of monic polynomials with coefficients in a com-
mutative ring A with identity. Let us quote the following two well-known
results (cf. [1], [3], [4]). '

THEOREM (2.1) (Generalized Euclidean Division). For any G(Y)e€ A[Y] there
is a unique G*(Y) € A[Y] such that G(Y) = G*(Y)modH(Y)A[Y] and degy ,G*
<degy H for j=1,...,n

THEOREM (2.2) (Generalized Weierstrass Division). Let H(X, Y) = (H
(X, Y,),..., H (X, Y))eC{X, Y} be a sequence of power series such that
H, (O, Y)#0 in C{Y} for j=1,...,n For any G(X, Y)e C{X, Y} there is
a unique G_(X, Y)eC{X}[Y] such that G = G ,modH(X, Y)C{X, Y} and
degy,G, <ord HAO, Y) for j=1,.

Suppose now that H (X Y)isa sequence of distinguished polynomials, so
ordy H(O, Y) = degy H(X, Y)) (i = 1,..., n). Then, by the uniqueness part of
(2.2) we have for any G(X, Y)e C{X}[Y]: G*(X, Y) = G (X, Y). In particular
we get .

COROLLARY (2.3) (cf. [1] p. 206). If H(X, Y) = (H,(X, Y,),..., H (X, Y))
e C{X}[Y]"is a sequence of distinguished polynomials then H(X, Y)C{X, Y}
NnC{X}[Y] = H(X, Y)C{X}[Y].

The aim of this section is

THEOREM (24). Let H(X, Y)= (H,(X, Y),..., H (X, Y))e C{X} [Y]" be

a sequence of monic polynomials. Let m;(y) = ord A0, Y+ yj) = n)
for ye C". Then for any family {R‘”(X Y)} of elements of the ring C{X }[Y]
such that deg JR"’)(X Y) <m(y)j = n) for ye C" there is a unique

R(X, Y)e C{X}[Y] such that R(X, Y+y) = R‘”(X, Y)modH(X, Y+y)C{X, Y}
and degy R(X, Y) < degy Hy(X, Y)(i = 1,..., n).

Our proof of (2.4) is based on Lemma (2.6) presented below. Retaining the
notation adopted in the beginning of this section assume that the polynomial
H(Y) has a factorisation into pairwise strictly comprime monic polynomials

Hp/(Y)(y;e 1)) ie. H(Y) = [] HY?(Y) with 1 e (HP(Y), HY?(Y))A[Y;] pro-
yjelj
vided y; # y;. Here I; is a non-empty set which may be infinite, we assume

H(yl)(Y) =1 for all but finite number of y;el,. Let H(Y) = (HY”(Y)),...,
H‘y"’(Y)) for any y = (y,,..., y)el =1, x...x1I,. The ideals H‘”(Y)A[Y],
yel are pairwise comaximal, so for n =1 (one variable Y) we have

(VHO(Y)A[Y] = [[ HY(Y)A[Y] = H(Y)A[Y]. By induction on the number
yel el ,
n of variables Y v:e check
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Lemma (2.5). (VHP(Y)A[Y] = H(Y)A[Y].

Proof. Let n > 1 and suppose that (2.5) holds for n— 1. Fix 2PN R Y=
€lyx...xl,_ and let A=A[Y,..., Y, J(H ") Yy,..., H1)(Y,_))

= A[Y,,..., Y,_,] where Y, is the residue class of Y,. Let G(Y)e ) HO(Y)A[ Y]
yel

Then G(Y,,..., Y,_;, Y,)e HY"(Y,)A[Y,] for all y, e I, so by the case n = 1 we
get G(Y,,..., Y,_,, Y)e H (Y)A[Y,]. Hence there is a polynomial Q,(Y)e A[Y]
such that G(Y) = H,(Y,). Q,(Y)mod(HY"(Y)),..., H¥»19(Y,_,)). Applying the
induction hypothesis we get G(Y)e H(Y)A[Y]. This proves the lemma since
the inclusion H(Y)A[Y] < () H®(Y)A[Y] is obvious.
yel

LEMMA (2.6). For any family {r‘y)(Y)}ye, of polynomials from A[Y] such that
degy r(Y) < degy HY)(Y) (j = 1,..., n) for all yel there is a unique r(Y)e
€ A[Y] such that r(Y) = r(Y)modHY(Y)A[Y] for yel and degy r(Y)
< degy H(Y) (j=1,...,n)

Proof. By the Chinese Remainder Theorem there is a G(Y)e A[Y] such
that G(Y) = r®(Y)mod H?(Y)A[Y]. Let G*(Y) be such that in (2.1).

One sees easily that we may take r(Y) = G*(Y). The uniqueness follows
from (2.5) and from the uniqueness of the remainder in (2.1). Now, we are in
a position to prove theorem (2.4).

Proof of (24). By Hensel’s lemma we may write Hy(X, Y)
=[] HY? (X, Y) with  HY)(O, Y) = (Y;—y)y™». Let HY(X, Y)

€C
= zH(ly”(X, Y),..., HY”(X, Y,)) for any y = (y,,..., y,) € C". Let us note the
following two properties:
a) H(X, Y+y)C{X, Y} = HY(X, Y+))C{X, Y} by Hensel’s lemma
b) HY(X, Y+y)C{X, Y} n C{X}[Y] = HO(X, Y+)C{X}[Y] by Corol-
lary (2.3). |

Let R(X, Y)e C{X}[Y]. Using a) and b) we check that the congruences
R(X, Y+y) = RO(X, Y)modH(X, Y+y)C{X, Y} and R(X, Y) = RO(X, Y—y)
mod H”(X, Y)C{X}[Y] are equivalent. Now (2.4) follows from (2.6) by taking
in (2.6) r(X, Y) = RY(X, Y—)).

3. Max Noether’s Theorem. Theorem (3.1) given below can be viewed as
a generalisation of Max Noether’s af +bg theorem.

THEOREM (3.1). Suppose that F(X, Y)e C{X}[ Y]V satisfies the equivalent
conditions of Proposition (1.4). Let G(X, Y)e C{X}[Y] be such that G(X, Y +y)
eF(X, Y+y)C{X, Y} for all yeC". Then G(X, Y)e F(X, )C{X}[Y]

Before giving the proof of (3.1) let us remark that the local conditions
G(X, Y+y)e F(X, Y+y)C{X, Y} are relevant only for finite number of y e C"
such that F(O, y) = 0.

Indeed F(X, Y+y)C{X, Y} # C{X, Y} if and only if F(O, y) = 0.
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Proof of (3.1). We prove first the theorem for the sequence of monic
polynomials H(X, Y) = (H,(X, Y,),..., H(X, Y)) e C{X}[Y]". Let G(X, Y)
e C{X}[Y] be such that G(X, Y+y)=0modH(X, Y+y)C{X, Y}, yeC".
Letting G*(X, Y) such that in (2.1) we check easily that G*(X, Y+Y)
= 0mod H(X, Y+))C{X, Y}, ye C", moreover we have deg, G* < deg, H/(X, Y)
(G =1,..., n. According to (2.4) this relationships imply G*(X, Y) =0, so
GX, Y)e H(X, Y)C{X}[Y].

Let us now pass to the general case. By Property (1.3) there is a sequence of
monic polynomials H(X, Y) = (H,(X, Y)),..., H,(X, Y,)) such that H/(X, Y)
eFX, V)C{X}[Y](=1,..,n,s0 HX, Y+))C{X, Y} c F(X, Y+y)C{X, Y}
for all yeC". Let m;(y) = ordy H;(0, Y;+y;). By assumption we may write

GX, Y+y) = Z OP(X, Y)F,(X, Y+y) with Q,(X, Y)e C{X, Y}. Using (2.2)

we get polynomlals RP(X, Y)e C{X}[Y] such that deg, RP (X, Y) < m,(y)
(= ., n) and Q?”(X Y) = RP(X, Y)modH(X, Y + y)C{X Y}. Hence we

get G(X, Y+y) = Z RP(X, Y)F(X, Y +y)mod H(X, Y+y)C{X, Y}. Accor-
=1

ding to (2.4) there are polynormals R,(X, Y)e C{X}[Y] such that degy R,(X, Y)
<degy H(X,Y) (=1,...,n and R,(X, Y+y) = RP(X, Y)modH(X Y+y)
N

C{X, Y}. So we may write G(X, Y+y) = Y R(X, Y+y)F,(X, Y+y)mod
=1

H(X, Y+y)C{X, Y} and by the first part of the proof we get G(X, Y)
= z R/(X, Y)F/(X, Y)modH(X, Y)C{X}[Y]. Hence G(X, Y)=0 mod

F(X Y)C{X}[Y] since H(X, Y)C{X}[Y] < F(X, Y)C{X}[Y].
Finally we note a generalisation of Hensel’s lemma (cf. [4], Th. 23.11).
THEOREM (3.2). Suppose that F(X, Y)e C{X}[Y]" satisfies the equivalent
conditions of Propositions (1.4). Then the injections C{X}[Y]aP(X,Y)
—=P(X, Y+y)eC{X, Y} induce an isomorphism

C{X}[YVF(X, Y)- [] C{X, Y}/F(X, Y+y).
yeCn
Proof. Let &,: C{X}[Y]-C{X, Y}/F(X, Y+y) be the composite of the

injection C{X [Y] 3P(X, Y)-»P(X, Y+y)eC{X, Y} and the natural homo-
morphism

C{X, Y} >C{X, Y}/F(X, Y+y).

It suffices to check the following properties
a) @, is surjective
b) The ideals ker ®, are pairwise comaximal

¢) () kerd, = F(X, Y)C{X}[Y].

yeCn
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Let H(X, Y) = (H,(X, Y)),..., H,(X, Y,)) be a sequence of monic polynomials
such that H(X, Y)C{X}[Y] < F(X, Y)C{X}[Y]. One gets easily a) from the
surjectivity of the homomorphism C{X}[Y]- C{X, Y}/H(X, Y +y). Property
b) follows from the fact that the ideals H(X, Y+y)C{X, Y} are pairwise

comaximal. Property c) we get from (3.1): ﬂ ker®, = ﬂ (F(X, Y+y)
yeCn yeCn
C{X, Y} nC{X}[Y]) = F(X, Y)C{X}[Y].
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A. Tlnocku, 3aMeuanss 0 NOJHHOMHAJIBLHLIX YPABHEHHSX ¢ AHAIHTHYCCKHMH ko> dunaenTamn

Hoxa3siBaercs Teopema I'miabbepra o kopHsSx M Teopema HéTepa mns moIMHOMHATLHBIX
ypaBHeHHH ¢ x03(hGbHIMEHTaMH B KOJIbLE CTENEHHBIX PANOB.



