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Abstract We consider a new approach to the local geometry of plane algebraic curves
that allows us to obtain the basic results of the theory of plane algebroid branches over
algebraically closed fields of arbitrary characteristic. We do not use the Hamburger-
Noether expansions. Our basic tool is the logarithmic distance on the set of branches
satisfying the strong triangle inequality which permits to make calculations directly
on the equations of branches.
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1 Introduction

We present a new approach to the theory of plane algebroid branches over an alge-
braically closed field of arbitrary characteristic. We prove many of the classical results
which can be interpreted in terms of the semigroup associated with a branch. The pre-
sented results are well-known but our proofs are new. In contrast to classical treatments
of the subject given by Ancochea [6], Lejeune-Jalabert [29], Moh [32], Angermüller
[7], Russell [38] and Campillo [11] we do not use the quadratic transformations. To
avoid the Hamburger-Noether expansions we base our approach on the direct con-
struction of key polynomials (the notion introduced by MacLane [30] in 1936) given
by Seidenberg in his PhD thesis on the valuation ideals in polynomial rings. As far as
we know the Seidenberg article of [40] is the first publication in which appears the
God-given inequality nkβk < βk+1 (we use the notation introduced by Zariski).

In all this paper we use the strong triangle inequality (STI) proved by the second
author in 1985. It allows to give simple proofs of the Abhyankar–Moh theory, the
Bresinsky–Angermüller characterization of semigroups associated with branches and
the description of branches with given semigroup.

A plane algebroid branch may be given either by an irreducible equation f (x, y) =
0 or by a parametrization x = φ(t), y = ψ(t). The treatments of the subject which
use the Hambuger-Noether expansions (or Puiseux’ expansions in the case of charac-
teristic 0) are based on the interplay between the equations and the parametrizations of
branches. In this paper after having proved the STI we make calculations on the equa-
tions of branches without recourse to their parametrizations. In this way we get shorter
and conceptually simpler proofs of basic theorems than in the classical approach to
plane algebroid branches.

In this paper we do not pretend to completeness. For the embedded resolution
process by blowing-ups as well as topological properties of singularities we refer the
reader to the book of C.T.C.Wall [46]. The approach based on the classical notion of
infinitely near points is presented in the book by Casas-Alvero [13], where many more
aspects of plane curves singularities are treated.

The paper is organized as follows. We review in Sect. 2 the results on plane algebroid
curves needed in the sequel. In particular, we prove the strong triangle inequality. In
Sect. 3 we study the structure of the semigroup associated with a plane branch following
the method of Seidenberg. Section 4 is devoted to the concept of key polynomial and
to the Abhyankar–Moh theory of approximate roots. In Sect. 5 we prove a version
of the Abhyankar–Moh irreducibility criterion which is the basic tool for studying
the branches with given semigroup (Sects. 6, 7). We finish Sect. 7 with Abhyankar’s
irreducibility criterion in terms of generalized Newton’s diagrams.

The following notation is used in the sequel. The set of all integers (resp. non-
negative integers) is denoted by Z (resp. N). We write gcd S for the greatest common
divisor of a nonempty subset S ⊂ N. Conventions about calculating with +∞ are
usual. In all this note K is an algebraically closed field of arbitrary characteristic.

The authors thank Bernard Teissier for reading the manuscript and making valuable
suggestions.
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An approach to plane algebroid branches 229

2 Preliminaries

In this section we fix our notations and recall some useful notions and results.

2.1 Arithmetical lemmas and semigroups of naturals

We state here without proof some properties of semigroups of natural numbers that
we will use in Sect. 3 of this paper. For the proofs we refer the reader to [7] (see also
[26]).

Proposition 2.1 Let v0, . . . , vk be a sequence of positive integers. Set di =
gcd(v0, . . . , vi ) for i ∈ {0, 1, . . . , k} and ni = di−1

di
for i ∈ {1, . . . , k}. Then for

every a ∈ Zdk we have Bézout’s relation:

a = a0v0 + a1v1 + · · · + akvk,

where a0 ∈ Z and 0 ≤ ai < ni for i ∈ {1, . . . , k}. The sequence (a0, . . . , ak) is
unique. Assume that ni−1vi−1 ≤ vi for i ∈ {2, . . . , k}. Then for a = nkvk we have
a0 > 0. If a ∈ Nv0 + · · · + Nvk then a0 ≥ 0.

Remark 2.2 Suppose that vk �∈ Nv0 +· · ·+Nvk−1. Then nk > 1 and nk−1vk−1 < vk .

Let n > 0 be an integer. A sequence of positive integers (v0, . . . , vh) is said to be
a Seidenberg n-characteristic sequence or n-characteristic sequence if v0 = n and it
satisfies the following two axioms
1. Set di = gcd(v0, . . . , vi ) for 0 ≤ i ≤ h and ni = di−1

di
for 1 ≤ i ≤ h. Then dh = 1

and ni > 1 for 1 ≤ i ≤ h.
2. ni−1vi−1 < vi for 2 ≤ i ≤ h.

Note that condition (2) implies that the sequence (v1, . . . , vh) is strictly increasing.
If n > 1 then h ≥ 1. If h = 1 then the sequence (v0, v1) is a Seidenberg n-characteristic
sequence if and only if v0 = n and gcd(v0, v1) = 1. There is exactly one 1-sequence
which is (1). Note also that 2h ≤ n.

If (v0, . . . , vh) is an n-characteristic sequence then for any k ∈ {1, . . . , h} the

sequence
(
v0
dk
, . . . ,

vk
dk

)
is an n

dk
-characteristic sequence. Its associated sequences are(

d0
dk
, . . . ,

dk
dk

)
and (n1, . . . , nk).

We say that a subset G of N is a semigroup if it contains 0 and if it is closed under
addition.

Let G be a nonzero semigroup and let n ∈ G, n > 0. Then there exists (cf.
[26], Chapter 6, Proposition 6.1) a unique sequence v0, . . . , vh such that v0 = n,
vk = min(G\Nv0 + · · · + Nvk−1) for k ∈ {1, . . . , h} and G = Nv0 + · · · + Nvh .
We call the sequence (v0, . . . , vh) the n-minimal system of generators of G. If n =
min(G\{0}) then we say that (v0, . . . , vh) is the minimal set of generators of G.
Clearly gcd G = gcd(v0, . . . , vh) = dh . If gcd G = 1 then G is said to be a numerical
semigroup.

Proposition 2.3 Let G be a numerical semigroup with n-minimal system of generators
(v0, . . . , vh). Suppose that ni−1vi−1 ≤ vi . Then
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230 E. R. García Barroso, A. Płoski

1. The sequence (v0, . . . , vh) is an n-characteristic sequence.
2. min(G\{0}) = min(v0, v1).
3. The minimal system of generators of G is (v0, v1, . . . , vh) if v0 < v1,
(v1, v0, . . . , vh) if v1 < v0 and v0 �≡ 0 (mod v1) and (v1, v2, . . . , vh) if v0 ≡ 0
(mod v1). Moreover, the minimal system of generators of G is a min(G\{0})-
characteristic sequence.

4. Let c = ∑h
k=1(nk − 1)vk − v0 + 1. Then for every a, b ∈ Z: if a + b = c − 1 then

exactly one element of the pair (a, b) belongs to G. Consequently c is the smallest
element of G such that all integers bigger than or equal to it are in G.

5. c is an even number and �(N\G) = c
2 .

6. Each vk, k > 0 is an irreducible element of G, that is vk is not a sum of two
nonzero elements of the semigroup G.

The number c is called the conductor of the semigroup G. To check the properties
of the conductor quoted in Proposition 2.3 one can adopt the elegant proof of the
Conductor Formula for the planar semigroups given in [39].

2.2 Plane algebroid curves

We review here some basic notions from the local theory of algebraic curves. For more
details we refer the reader to [41].

Let f ∈ K[[x, y]] be a non-zero power series without constant term. An algebroid
curve { f = 0} is defined to be the ideal generated by f in K[[x, y]]. We say that
{ f = 0} is irreducible (reduced) if f in K[[x, y]] is irreducible ( f has no multiple
factors). The irreducible curves are also called branches. The order ord f of the power
series f is, by definition, the multiplicity of the curve { f = 0}. The initial form in f
of f defines the tangent lines of { f = 0}. If { f = 0} is irreducible then it has only
one tangent line i.e. in f = lord f where l is a linear form.

A formal isomorphism� is a pair of power series�(x, y) = (ax +by +· · · , a′x +
b′y +· · · ) where ab′ − a′b �= 0 and the dots denote terms in x, y of order bigger than
1. The map f −→ f ◦� is an isomorphism of the ring K[[x, y]]. Two curves { f = 0}
and {g = 0} are said to be formally equivalent if there is a formal isomorphism �

such that f ◦� = g · unit.
For any power series f, g ∈ K[[x, y]] we define the intersection multiplicity or

intersection number i0( f, g) by putting

i0( f, g) = dimKK[[x, y]]/( f, g),

where ( f, g) is the ideal of K[[x, y]] generated by f and g. If f, g are non-zero power
series without constant term then i0( f, g) < +∞ if and only if { f = 0} and {g = 0}
have no common branch. The following properties are basic
1. if � is a formal isomorphism then i0( f, g) = i0( f ◦�, g ◦�).
2. i0( f, gh) = i0( f, g)+ i0( f, h).

Let t be a variable. A parametrization is a pair (φ(t), ψ(t)) ∈ K[[t]]2 such that
φ(t) �= 0 orψ(t) �= 0 in K[[t]] andφ(0) = ψ(0) = 0. We say that the parametrization
(φ(t), ψ(t)) is good if the field of fractions of the ring K[[φ(t), ψ(t)]] is equal to the
field K((t)).
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An approach to plane algebroid branches 231

Theorem 2.4 (Normalization Theorem) Let f = f (x, y) ∈ K[[x, y]] be an irre-
ducible power series. Then there is a good parametrization (φ(t), ψ(t)) such that
f (φ(t), ψ(t)) = 0. If (α(s), β(s)) ∈ K[[s]]2 is a parametrization such that
f (α(s), β(s)) = 0 then there is a power series σ(s) ∈ K[[s]], σ(0) = 0 such
that α(s) = φ(σ(s)) and β(s) = ψ(σ(s)).

Hamburger-Noether expansions provide an explicit way to give a parametrization
for a branch, valid in any characteristic. Let us recall also

Theorem 2.5 Under the above assumptions and notations, for any power series g =
g(x, y) ∈ K[[x, y]] we have i0( f, g) = ord g(φ(t), ψ(t)).

Taking g = x (respect. g = y) we get from the above formula that ord f (0, y) =
i0( f, x) = ord φ(t) and ord f (x, 0) = i0( f, y) = ord ψ(t).

Using Theorem 2.5 we check the following two properties of intersection numbers:
3. If f is irreducible, then i0( f, g + g′) ≥ inf{i0( f, g), i0( f, g′)} with equality if

i0( f, g) �= i0( f, g′).
4. If f is irreducible and i0( f, g) = i0( f, h) < +∞ then there exists a constant

c ∈ K such that i0( f, g − ch) > i0( f, g).
In what follows we need

Lemma 2.6 Let f (x, y) ∈ K[[x, y]] be an irreducible power series such that
f (0, y) �= 0 and let (α(s), β(s)), α(s) �= 0 in K[[s]], be a parametrization such
that f (α(s), β(s)) = 0. Then, for every power series g(x, y) ∈ K[[x, y]] we have

ord g(α(s), β(s)) = i0( f, g)

i0( f, x)
ord α(s).

Proof Let (φ(t), ψ(t)) be a good parametrization of the branch { f (x, y) = 0}. Then
α(s) = φ(σ(s)), β(s) = ψ(σ(s)) for a power series σ(s) ∈ K[[s]], σ(0) = 0. We
get ord α(s) = ord φ(t)ord σ(s) = ord f (0, y)ord σ(s) = i0( f, x)ord σ(s) and
consequently

ord σ(s) = ordα(s)

i0( f, x)
.

On the other hand ord g(α(s), β(s)) = ord g(φ(t), ψ(t)).ord σ(s) and by Theo-
rem 2.5 we get

ord g(α(s), β(s)) = i0( f, g)ord σ(s).

Now the formula for ord g(α(s), β(s)) follows. �
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232 E. R. García Barroso, A. Płoski

For any irreducible power series f ∈ K[[x, y]] we put

	( f ) = {i0( f, g) : g runs over all power series such that g �≡ 0 (mod f )}.

Clearly 	( f ) is a semigroup. We call 	( f ) the semigroup associated with the
branch { f = 0}.

Two branches { f = 0} and {g = 0} are equisingular if and only if 	( f ) = 	(g).
Two formally equivalent branches are equisingular. The branch { f = 0} is non-
singular (that is of multiplicity 1) if and only if	( f ) = N. We have min(	( f )\{0}) =
ord f .

Different (but equivalent) definitions of equisingularity were given by Zariski in
[47].

Note that the mapping g �→ i0( f, g) induces a valuation v f of the ring
K[[x, y]]/( f ). The semigroup 	( f ) can be described as the semigroup of values
of v f .

2.3 The strong triangle inequality

The end of this section is devoted to establish the well-known Strong Triangle Inequal-
ity given in [35] (see Corollary 3.3) in a slightly more general form and for any char-
acteristic.

Let A be a non-empty set. A function d : A × A −→ R ∪ {+∞} satisfying for
arbitrary a, b, c ∈ A, the conditions:

(i) d(a, a) = +∞,
(ii) d(a, b) = d(b, a),

(iii) d(a, b) ≥ inf{d(a, c), d(b, c)},
will be called a logarithmic distance (for short log-distance). We call the third property
the Strong Triangle Inequality (the STI). It is equivalent to the following

(iii’) at least two of the numbers d(a, b), d(a, c), d(b, c) are equal and the third
one is not smaller than the other two.

Lemma 2.7 Let d be a log-distance in the set A. For any a1, . . . , am, b1, . . . , bn, c ∈ A
at least one of the following conditions holds:
(I) there exists j ∈ {1, . . . , n} such that for any i ∈ {1, . . . ,m}, d(ai , c) ≤ d(ai , b j ),

(II) there exists i ∈ {1, . . . ,m} such that for any j ∈ {1, . . . , n}, d(b j , c) ≤ d(ai , b j ).

Proof Let us suppose that neither (I) nor (II) holds. Then, for any j ∈ {1, . . . , n}
there exists an index p( j) ∈ {1, . . . ,m} such that d(ap( j), c) > d(ap( j), b j ) and, for
any i ∈ {1, . . . ,m}, there exists s(i) ∈ {1, . . . , n} such that d(bs(i), c) > d(ai , bs(i)).
Applying the STI to ap( j), b j , c and to ai , bs(i), c we get

d(ap( j), b j ) = d(b j , c) < d(ap( j), c), (1)

and
d(ai , bs(i)) = d(ai , c) < d(bs(i), c). (2)
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An approach to plane algebroid branches 233

We may assume without loss of generality that

d(ap(1), b1) = n
sup
j=1

{d(ap( j), b j )}. (3)

Using successively (1), (2) and again (1), we get

d(ap(1), b1) < d(ap(1), c) = d(ap(1), bs(p(1))) < d(bs(p(1)), c) = d(ap( j1), b j1)

with j1 = s(p(1)). Thus we have d(ap(1), b1) < d(ap( j1), b j1), which contradicts
assumption (3). �


An important log-distance on the set of branches can be defined by means of the
intersection multiplicity. Let {l = 0} be a smooth branch. For any branches { f = 0}
and {g = 0} different from the branch {l = 0} we put

dl( f, g) = i0( f, g)

i0( f, l)i0(g, l)
.

Our aim is to prove

Theorem 2.8 The function dl is a log-distance in the set of all branches different from
{l = 0}.
Proof (cf. [15]) We may assume l = x . Since dx ( f, f ) = +∞ and dx ( f, g) =
dx (g, f ) it suffices to check the STI. Let { f = 0}, {g = 0} and {h = 0}
be three branches different from {x = 0}. Let m = i0( f, x) = ord f (0, y),
n = i0(g, x) = ord g(0, y), p = i0(h, x) = ord h(0, y). Using the Weier-
strass preparation theorem we may assume that f, g, h are distinguished polyno-
mials of degree m, n, p respectively. Using the Normalization Theorem we check
(see [41], Theorem 21.18) that there exist power series α(s), αi (s), β j (s) and γk(s)
such that f (α(s), y) = ∏m

i=1(y − αi (s)), g(α(s), y) = ∏n
j=1(y − β j (s)) and

h(α(s), y) = ∏p
k=1(y − γk(s)).

The function d : K[[s]] × K[[s]] −→ R ∪ {+∞} given by d(α(s), β(s)) =
ord(α(s)− β(s)) is a log-distance in K[[s]]. Fix k ∈ {1, . . . , p} and use Lemma 2.7
to α1(s), . . . , αm(s), β1(s), . . . , βn(s) and γ (s) = γk(s). Then

(I) there exists j ∈ {1, . . . , n} such that ord(αi (s)− γ (s)) ≤ ord(αi (s)− β j (s)) for
all i ∈ {1, . . . ,m}, or

(II) there exists i ∈ {1, . . . ,m} such that ord(β j (s) − γ (s)) ≤ ord(αi (s) − β j (s)),
for all j ∈ {1, . . . , n}.

If (I) holds then
∑m

i=1 ord(αi (s) − γ (s)) ≤ ∑m
i=1 ord(αi (s) − β j (s)) that is

ord f (α(s), γ (s)) ≤ ord f (α(s), β j (s)). By Lemma 2.6 we get i0(h, f )
i0(x,h)

≤ i0(g, f )
i0(x,g)

which implies dl( f, h) ≤ dl( f, g).
If (II) holds then

∑n
j=1 ord(β j (s) − γ (s)) ≤ ∑n

j=1 ord(αi (s) − β j (s)) that is

ord g(α(s), γ (s)) ≤ ord g(α(s), αi (s)) and again by Lemma 2.6 we get i0(h,g)
i0(x,h)

≤
i0( f,g)
i0(x, f ) which implies dl(g, h) ≤ dl( f, g).

Consequently dl( f, g) ≥ inf{dl( f, h), dl(g, h)}. �
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234 E. R. García Barroso, A. Płoski

Corollary 2.9 The function d( f, g) = i0( f,g)
ord f ord g is a log-distance in the set of all

branches.

Delgado de la Mata in [20] gave an interesting application of Theorem 2.8 to the
factorization of polar curves.

3 The semigroup of a plane algebroid branch

The aim of this section is to study the structure of the semigroup associated with a
plane branch. We follow the method developped by Seidenberg in [40].

Let f = f (x, y) ∈ K[[x, y]] be an irreducible power series and let 	( f ) be the
semigroup associated with the branch { f = 0}. Suppose that { f = 0} �= {x = 0} and
put n = i0( f, x). Let (b0, . . . , bh), b0 = n be the n-minimal system of generators of
	( f ).

Lemma 3.1 	( f ) is a numerical semigroup i.e. gcd(	( f )) = 1.

Proof Let (φ(t), ψ(t)) be a good parametrization of the branch f (x, y) = 0.
Then we have K((t)) = K((φ(t), ψ(t))) and we can write t = p(φ(t),ψ(t))

q(φ(t),ψ(t)) for
some p(x, y), q(x, y) ∈ K[[x, y]], q �≡ 0 (mod f ). Taking orders gives 1 =
i0( f, p) − i0( f, q). Put a := i0( f, p) and b := i0( f, q). Then a, b ∈ 	( f ) and
gcd(a, b) = 1, which proves the lemma. �


We put e0 = n, ek = gcd(ek−1, bk) for k ∈ {1, . . . , h} and nk = ek−1
ek

for k ∈
{1, . . . , h}. By Lemma 3.1 we have eh = 1. In what follows we write v f (g) instead
of i0( f, g).

Theorem 3.2 (Semigroup Theorem) Let { f = 0} be a branch such that { f = 0} �=
{x = 0}. Set n = v f (x) and let b0, . . . , bh be the n-minimal system of generators of the
semigroup 	( f ). There exists a sequence of monic polynomials f0, f1, . . . , fh−1 ∈
K[[x]][y] such that for k ∈ {1, . . . , h}:
(ak) degy( fk−1) = n

ek−1
, for k ∈ {1, . . . , h},

(bk) v f ( fk−1) = bk for k ∈ {1, . . . , h},
(ck) if k > 1 then nk−1bk−1 < bk.

Moreover nk > 1 for all k ∈ {1, . . . , h}.
Before giving the proof of the Semigroup Theorem let us note some remarks and

corollaries.
The sequence b0, . . . , bh is a Seidenberg n-characteristic sequence and will be

called the Seidenberg n-characteristic of the branch { f = 0} (with respect to the
regular branch {x = 0}). We will write charx f = (b0, . . . , bh). Therefore charx f
is determined by n = v f (x) and the semigroup 	( f ). Let fh be the distinguished
polynomial associated with f and let bh+1 = +∞. Then degy fh = n

eh
= n and

v f ( fh) = bh+1 = +∞. The polynomials f0, f1, . . . , fh ∈ K[[x]][y] will be called
key polynomials of f . They are not uniquely determined by f .
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An approach to plane algebroid branches 235

Corollary 3.3 Suppose that two branches { f = 0} and {g = 0} intersect the axis
{x = 0} with the same multiplicity n < +∞. Then charx f = charx g if and only if
{ f = 0} and {g = 0} are equisingular.

Let β0, . . . , βg be the minimal system of generators of the semigroup 	( f ) (β0 =
min{	( f )\{0}} = ord f ). We put char f = (β0, . . . , βg). Note that char f = charx f
if and only if v f (x) = ord f .

The two corollaries presented below follow from the Semigroup Theorem and
Proposition 2.3.

Corollary 3.4 (Inversion Formulae) Let charx f = (b0, b1, . . . , bh). Then char f =
charx f if and only if b0 < b1. If b1 < b0 and b0 �≡ 0 (mod b1) then char f =
(b1, b0, . . . , bh). If b0 ≡ 0 (mod b1) then char f = (b1, b2, . . . , bh).

Let O be the normalization of the ring O = K[[x, y]]/( f ) and let C be the conductor
ideal of O in O. Put c( f ) = dimK O/C. Then c( f ) is the smallest element of 	( f )
such that c( f )+ N ∈ 	( f ) for any integer N ≥ 0 (see [11], p. 136).

Corollary 3.5 (Conductor Formula) If charx f = (b0, b1, . . . , bh) then
c( f ) = ∑h

k=1(nk − 1)bk − b0 + 1.

To prove the Semigroup Theorem let { f = 0} be a branch such that n = i0( f, x) <
+∞ and let b0, . . . , bh be the n-minimal system of generators of the semigroup 	( f ).
Observe that by the Weierstrass Division Theorem:

	( f ) = {v f (g) : g ∈ K[[x]][y]\{0} : degy g < n}.

Proposition 3.6 There exists a monic polynomial f0 ∈ K[[x]][y] such that
(a1) degy( f0) = n

e0
= 1,

(b1) v f ( f0) = b1.

To prove Proposition 3.6 we check the following three properties:

Lemma 3.7 (Property I0) If ψ is a non-zero polynomial with degy ψ < 1 then

v f (ψ) ∈ Nb0.

Proof Obviously ψ ∈ K[[x]]. Thus v f (ψ) = (ord ψ)v f (x) ∈ Nb0. �

Lemma 3.8 (Property II0) If degy ψ < 1 then v f (y + ψ) ≤ b1.

Proof Let g ∈ K[[x]][y] be such that v f (g) = b1. By the Euclidean division we
get g = Q · (y + ψ) + ψ1 with ψ1 ∈ K[[x]]. Clearly v f (g) �= v f (ψ1) and we get
b1 ≥ inf{v f (g), v f (ψ1)} = v f (g − ψ1) = v f (Q · (y + ψ)) ≥ v f (y + ψ). �

Lemma 3.9 (Property III0) If ψ ∈ K[[x]] and v f (y + ψ) ∈ Nb0 then there exists a
power series ψ ∈ K[[x]] such that v f (y + ψ) > v f (y + ψ).

Proof There exists an integer a ≥ 0 such that v f (y +ψ) = ab0 = v f (xa). Therefore
there is an element c ∈ K such thatv f (y+ψ−cxa) > v f (y+ψ). We putψ = ψ−cxa .

�
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Proof of Proposition 2.6 From Properties II0 and III0 it follows that there exists a
monic polynomial f0 of degree 1 such that v f ( f0) �∈ Nb0. By definition of b1 we get
v f ( f0) ≥ b1. The equality follows from Property II0. �

Proposition 3.10 Suppose that there exist monic polynomials f0, f1, . . . , fk−1 in
K[[x]][y] such that

(ai ) degy( fi−1) = n
ei−1

, for i ∈ {1, . . . , k},
(bi ) v f ( fi−1) = bi for i ∈ {1, . . . , k},
(ci ) ni−1bi−1 < bi for i ∈ {2, . . . , k}.

Then there exists a monic polynomial fk ∈ K[[x]][y] such that
(ak+1) degy( fk) = n

ek
,

(bk+1) v f ( fk) = bk+1,
(ck+1) nkbk < bk+1.

To prove Proposition 3.10 we check the following three properties:

Lemma 3.11 (Property Ik) If ψ is a non-zero polynomial with degy ψ < n
ek

then

v f (ψ) ∈ Nb0 + · · · + Nbk.

Proof Let l ≤ k. We will prove that for degy ψ < n
el

we have v f (ψ) ∈ Nb0+· · ·+Nbl .
We proceed by induction on l. The case l = 0 is already proved (see Property I0). Let
l > 0 and suppose the property holds for polynomials of degree less than n

el−1
. Fix

ψ ∈ K[[x]][y] with degy(ψ) <
n
el

and consider the fl−1-adic expansion of ψ :

ψ = ψ0 f s
l−1 + ψ1 f s−1

l−1 + · · · + ψs, (4)

where ψ0 �= 0, degy(ψi ) < degy( fl−1) = n
el−1

.

Note that s ≤ degy(ψ)

degy( fl−1)
< nl . Let I be the set of all i ∈ {0, . . . , s} such thatψi �= 0.

Therefore, by the induction hypothesis we get v f (ψi ) ∈ Nb0 + · · · + Nbl−1, and

v f (ψi ) ≡ 0 mod el−1 for i ∈ I. (5)

Moreover

v f (ψi f s−i
l−1 ) �= v f (ψ j f s− j

l−1 ) for i �= j ∈ I. (6)

Indeed, suppose that (6) is not true, so there exist i, j ∈ I such that i < j and
v f (ψi f s−i

l−1 ) = v f (ψ j f s− j
l−1 ). Therefore v f (ψi )+ (s − i)v f ( fl−1) = v f (ψ j )+ (s −

j)v f ( fl−1) and ( j − i)bl =v f (ψ j )− v f (ψi ) ≡ 0 mod el−1 by (5). The last relation

implies ( j −i) bl
el

≡ 0 mod nl and consequently j −i ≡ 0 mod nl because bl
el

and nl are
co-prime. We get a contradiction because 0< j−i ≤s<nl . Now by (4) and (6) we get

v f (ψ) = mins
i=0v f (ψi f s−i

l−1 ) = v f (ψ j f s− j
l−1 )

= v f (ψ j )+ (s − j)bl ∈ Nb0 + · · · + Nbl ,

for some j ∈ I . �


123



An approach to plane algebroid branches 237

Lemma 3.12 (Property IIk) If degy ψ < n
ek

then v f (y
n
ek + ψ) ≤ bk+1.

Proof Let g ∈ K[[x]][y] be such that v f (g) = bk+1. By the Euclidean division

we get g = Q · (y n
ek + ψ) + ψ1 with ψ1 ∈ K[[x]][y] and degy ψ1 < n

ek
. We

may assume ψ1 �= 0. Therefore v f (ψ1) ∈ Nb0 + · · · + Nbk by Property Ik and
v f (g) = bk+1 �= v f (ψ1). Now we get bk+1 ≥ inf{v f (g), v f (ψ1)} = v f (g − ψ1) =
v f (Q · (y n

ek + ψ)) ≥ v f (y
n
ek + ψ). �


Lemma 3.13 (Property IIIk) If ψ ∈ K[[x]][y] with degy ψ < n
ek

and v f (y
n
ek +ψ) ∈

Nb0 + · · · + Nbk then there is a polynomial ψ ∈ K[[x]][y], degy ψ < n
ek

such that

v f (y
n
ek + ψ) > v f (y

n
ek + ψ).

Proof By Proposition 2.1 any element of the semigroup Nb0 +· · ·+Nbk has the form
a0b0 + a1b1 + · · · + akbk with a0 ≥ 0 and 0 ≤ ai < ni for i ∈ {1, . . . , k}. Therefore

we can write v f (y
n
ek +ψ) = v f (xa0 f a1

0 · · · f ak
k−1) and there is an element c ∈ K such

that v f (y
n
ek +ψ−cxa0 f a1

0 · · · f ak
k−1) > v f (y

n
ek +ψ). Letψ = ψ−cxa0 f a1

0 · · · f ak
k−1.

Then we have v f (y
n
ek + ψ) > v f (y

n
ek + ψ). Since degy(x

a0 f a1
0 · · · f ak

k−1) = a1 +
a2

n
e1

+ · · · + ak
n

ek−1
≤ (n1 − 1)+ (n2 − 1) n

e1
+ · · · + (nk − 1) n

ek−1
= nnk

ek−1
− 1 < n

ek
,

degy ψ < n
ek

. �

Proof of Proposition 3.10 From Properties IIk and IIIk it follows that there exists a
monic polynomial fk of degree n

ek
such that v f ( fk) �∈ Nb0 +· · ·+ Nbk . By definition

of bk+1 we get v f ( fk) ≥ bk+1. The equality follows from Property IIk .
To check (ck+1) observe that v f ( f nk

k−1) = nkbk and degy f nk
k−1 = nk

n
ek−1

= n
ek

.

Therefore nkbk ≤ bk+1 by Property IIk and we get nkbk < bk+1 since bk+1 �∈
Nb0 + · · · + Nbk . �

Proof of Theorem 3.2 The theorem follows by induction from Proposition 3.6, Propo-
sition 3.10 and from Remark 2.2. �

Notes
Seidenberg gave in [40] the description of the semigroup of a zero-dimensional val-
uation of the extension K(x, y)/K ([40], Theorem 6, p. 398) in terms of generators.
The case of the semigroup associated with an algebroid plane branch was studied by
Azevedo in [9]. His method based on the Apéry sequences was extended by Anger-
müller in [7] to the case of arbitrary characteristic. For different characterizations of
the numerical semigroups we refer the reader to [26], Chapter 6.

If n = v f (x) �≡ 0 (mod char K) the Puiseux series are available. Zariski in [48] (see
also [25,36]) constructed the sequence β0, . . . , βg and the corresponding sequence
of key polynomials by using Puiseux series expansion determined by the equation
f (x, y) = 0. This method turned out efficient when applied to the semigroups of
integers associated with meromorphic curves (see [2–4]). A proof of the Semigroup
Theorem based on the Hamburger-Noether expansion was given by Russel in [38] and
Campillo in [11,12]. To describe the semigroup of a plane branch one can use the
characteristic pairs (see [7,29,32]) instead of the generators.
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4 Key polynomials and approximate roots

The key polynomials under the name of semi-roots were studied by Abhyankar [1]
and Popescu-Pampu [36]. Here we propose the treatment without any restriction on
the field characteristic.

Let f = f (x, y) ∈ K[[x, y]] be an irreducible power series such that i0( f, x) =
ord f (0, y) = n < +∞ and let charx f = (b0, . . . , bh), b0 = n. Let k ∈ {0, . . . , h}.
Recall that a monic polynomial g ∈ K[[x]][y] is a k-th key polynomial of f if degy g =
n
ek

and v f (g) = bk+1. By the Semigroup Theorem, for any k ∈ {0, . . . , h} there exists
a k-th key polynomial of f .

Lemma 4.1 Let f = f (x, y) ∈ K[[x, y]] be an irreducible power series such that
n = i0( f, x) < +∞ and let (b0, . . . , bh) be an n-characteristic sequence. Suppose
that there exist monic polynomials f0, . . . , fh−1 ∈ K[[x]][y] such that degy fk = n

ek

and i0( f, fk) = bk+1 for k ∈ {0, . . . , h − 1}. Then charx f = (b0, . . . , bh) and
f0, . . . , fh−1 are key polynomials of f .

Proof Recall that 	( f ) = {v f (g) : g ∈ K[[x]][y]\{0} : degy g < n}. By Lemma

3.11 we get 	( f ) = Nb0 + · · ·+ Nbh . According to the first statement of Proposition
2.3 the sequence b0, . . . , bh is the n-minimal system of generators of the semigroup
	( f ) and the lemma follows. �


Proposition 4.2 Let g be a k-th key polynomial of f . Then g is a distinguished polyno-

mial, irreducible in K[[x, y]] with characteristic charx g =
(

b0
ek
, . . . ,

bk
ek

)
. Moreover

the polynomials f0, f1, . . . , fk−1 are key polynomials of g.

Proof The polynomial g is irreducible since the value bk+1 = v f (g) is irreducible in
the semigroup 	( f ). Moreover, i0(x, g) = n

ek
that is g is a distinguished polynomial.

If we had i0(x, g) < n
ek

then g would be associated with a distinguished polynomial
of degree less than n

ek
, which contradicts Property Ik . Let us calculate i0( fi , g) for

i < k. Consider fi , g, f and the log-distances dx ( fi , g) = ei ek i0( fi ,g)
n2 , dx ( fi , f ) =

ei bi+1
n2 and dx (g, f ) = ek bk+1

n2 . The sequence
(
ei−1bi

)
is strictly increasing, therefore

dx ( fi , f ) < dx (g, f ) and by the STI we get dx ( fi , g) = dx ( fi , f ) which implies

i0( fi , g) = bi+1
ek

.

On the other hand degy fi = n
ei

= n
ek

: ei
ek

and ei
ek

= gcd
(

b0
ek
, . . . ,

bi
ek

)
. The

proposition follows from Lemma 4.1. �


Proposition 4.3 Let h ∈ K[[x]][y] be a (k − 1)-th key polynomial of f and let
g ∈ K[[x]][y] be a monic polynomial such that degy g = n

ek
and v f (g) > nkbk. Let

g = hnk + a1hnk−1 + · · · + ank , degy ai < degy h = n
ek−1

be the h-adic expansion of

g. Then v f (ai ) > ibk if 1 ≤ i < nk and v f (ank ) = nkbk.
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Proof Consider the h-adic expansion of g

g = hnk + a1hnk−1 + · · · + ank , (7)

where degy ai < degy h = n/ek−1.

Let I be the set of all i ∈ {1, . . . , nk} such that ai �= 0. Since v f (g) > nkbk =
v f (hnk ), I �= ∅. There is v f (ai ) < +∞ for i ∈ I and by Property Ik we get v f (ai ) ∈
Nb0 + · · · + Nbk−1, hence v f (ai ) ≡ 0 mod ek−1 for every i ∈ I . We have

v f (ai h
nk−i ) �= v f (a j h

nk− j ) (8)

for i, j ∈ I with i �= j .
Indeed, v f (ai hnk−i ) = v f (a j hnk− j )with i < j implies, as in the proof of Property

Ik , the congruence ( j − i)bk/ek ≡ 0 mod nk , which leads to a contradiction for
0 < j − i < nk .

From (7) and (8) we have

v f (g − hnk ) = nk
min
i=1

v f (ai h
nk−i ). (9)

By assumption v f (g) > nkbk = v f (hnk ), so v f (g − hnk ) = nkbk and (9) implies
nkbk ≤ v f (ai hnk−i ) = v f (ai )+ (nk − i)bk for i ∈ {1, . . . , nk}. Therefore we get

v f (ai ) ≥ ibk (10)

for i ∈ {1, . . . , nk}.
Moreover,

if v f (ai ) = ibk for i ∈ {1, . . . , nk} then i = nk . (11)

Indeed, from v f (ai ) = ibk it follows that ibk ≡ 0 mod ek−1 and ibk/ek ≡ 0
mod nk , so i ≡ 0 mod nk because bk/ek and nk are coprime. Hence we get i = nk .
According to (9) there exists i0 ∈ I such that v f (ai0 hnk−i0) = v f (g − hnk ) = nkbk .
Thus v f (ai0) = i0bk and by (11) we get i0 = nk . �


To prove the Abhyankar–Moh Theorem on approximate roots we use the properties
of key polynomials explained above. First let us recall the basic notions of Abhyankar–
Moh theory (see [2–4] or [36]).

Let R be an integral domain and let d > 1 be a positive integer such that d is
a unit in R. Denote deg f := degy f the degree of the polynomial f ∈ R[y] in
one variable y and assume that d divides deg f . According to Abhyankar and Moh
([3,4], Sect. 1) the approximate d-th root of f , denoted by d

√
f is defined to be the

unique monic polynomial satisfying deg( f − (
d
√

f
)d
) < deg f − deg d

√
f . For the

existence and uniqueness of d
√

f see [3,4]. We put by convention 1
√

f = f . Obviously
deg d

√
f = deg f

d . From the definition it follows that e
√

d
√

f = ed
√

f if ed is a unit which
divides deg f (see [25]).
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240 E. R. García Barroso, A. Płoski

Given any monic polynomial g ∈ R[y] of degree deg f/d we have the g-adic
expansion of f , namely

f = gd + a1gd−1 + · · · + ad ,

where ai ∈ R[y], deg ai < deg g.
The polynomials ai are uniquely determined by f and g.
The Tschirnhausen operator τ f (g) := g + 1

d a1 maps g to τ f (g) which is again a
monic polynomial of degree deg f/d. One checks (see [3,4], Sect. 1 and Sect. 6) that
1. a1 = 0 if and only if g = d

√
f ,

2. if f = (τ f (g))d + a1(τ f (g))d−1 + · · · + ad is the τ f (g)-expansion of f then
deg a1 < deg a1 or a1 = 0.
Using the above properties we get

3. d
√

f = τ f (τ f · · · (τ f (g))) with τ f repeated deg f/d times.
Let f = f (x, y) ∈ K[[x]][y] be an irreducible distinguished polynomial of degree

n > 1 such that charx f = (b0, . . . , bh), b0 = n.

Proposition 4.4 Let g = g(x, y) ∈ K[[x]][y] be a monic polynomial such that
degy g = n

ek
and v f (g) > nkbk. Assume that nk �≡ 0 mod char K. Then

(i) if h is a (k − 1)-th key polynomial of f then τg(h) is a (k − 1)-th key polynomial
of f as well,

(ii) v f ( nk
√

g) = bk.

Proof Consider the h-adic expansion of g: g = hnk + a1hnk−1 + · · · + ank . By
Proposition 4.3 we get v f (a1) > bk (because nk > 1). Therefore v f (τg(h)) =
v f (h + 1

nk
a1) = v f (h) = bk . Clearly degy τg(h) = degy h and (i) follows.

To check (i i)use degy g/nk = n/ek−1 times (i) and the formula for the approximate
root nk

√
g in terms of τg . �


Now we can prove the Abhyankar–Moh Theorem (see [3,4]).

Theorem 4.5 (Abhyankar-Moh Fundamental Theorem on approximate roots) Let
f = f (x, y) ∈ K[[x]][y] be an irreducible distinguished polynomial of degree n > 1
with charx f = (b0, b1, . . . , bh) and b0 = v f (x) = n. Let 1 ≤ k ≤ h + 1. Suppose
that ek−1 �≡ 0 mod charK. Then:
1. v f (

ek−1
√

f ) = bk,
2. ek−1

√
f is an irreducible distinguished polynomial of degree n/ek−1 such that

charx
ek−1

√
f = (b0/ek−1, b1/ek−1, . . . , bk−1/ek−1).

Proof According to Proposition 4.2 it suffices to check the first part of the theorem. We
use descendent induction on k. If k = h + 1 then ek−1 = eh = 1, bk = bh+1 = +∞
and obviously v f (

eh
√

f ) = bh+1. Let k ≤ h. Suppose that ek �≡ 0 (mod char K) and
v f (

ek
√

f ) = bk+1. The polynomial ek
√

f is of degree n/ek and v f (
ek
√

f ) > nkbk so we
can apply Proposition 4.4 (ii) to g = ek

√
f to get v f ( nk

√
g) = bk provided that nk �≡ 0

(mod char K).
Assume that ek−1 �≡ 0 (mod char K). Then ek, nk �≡ 0 (mod char K) and we have

nk
√

g = nk
√

ek
√

f = ek−1
√

f . Consequently, v f (
ek−1

√
f ) = bk and we are done. �
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Corollary 4.6 Suppose that n �≡ 0 (mod char K). Then e0
√

f , e1
√

f , . . . , eh
√

f is a
sequence of key polynomials of f .

Notes
S. Maclane introduced key polynomials in the classical work [30]. The maximal con-
tact curves (which are exactly the same concept) were studied by M. Lejeune-Jalabert
in [29] (see also [11] and [21] (Appendix E)) in positive characteristic. The key poly-
nomials under the name of semiroots appeared also in Abhyankar’s paper [1] (see [Po]
for detailed treatment in characteristic 0). They are connected with curvettes associ-
ated with extremal points in the dual graph of { f = 0} (see, for example [22] p. 54,
[36] p.13). They also play an important role in studying valuations [42].

S.S. Abhyankar and T.T. Moh developed the theory of approximate roots of poly-
nomials with coefficients in the meromorphic series field K((x)) in the fundamental
paper [3,4]. In [5] they applied approximate roots to prove the Embedding Line The-
orem. Later on Abhyankar in [2] gave a simplified version of [3,4] and [5]. The
approach of Abhyankar and Moh is based on the technique of deformations of power
series. H. Pinkham in [34] proposed a method of eliminating the deformations which
works in the algebroid case K[[x]][y]. P. Russel in [38] used the Hamburger-Noether
expansions to reprove the Abhyankar-Moh results (in the algebroid case) with weaker
assumptions on the field characteristic. In our presentation of the subject we followed
[25] (see also[16,17]). The reader will find in [36] more references on the approximate
roots.

5 The Abhyankar–Moh irreducibility criterion

The aim of this section is to give a version of the Abhyankar–Moh irreducibility
criterion. Our proof is based on Theorem 5.2 below.

Let { f = 0} and {g = 0} be two branches different from {x = 0}. Let charx f =
(b0, . . . , bh), b0 = n = i0( f, x) and charx g = (b′

0, . . . , b′
h′), b′

0 = n′ = i0(g, x). We
denote by f0, . . . , fh and g0, . . . , gh′ key polynomials of f and g, respectively.

Lemma 5.1 The equalities bi
n = b′

i
n′ for all i ∈ {1, . . . , k} imply n

ei
= n′

e′
i

and bi
ei

= b′
i

e′
i

for all i ∈ {1, . . . , k}.
Proof We get ne′

i = n gcd(b′
0, . . . , b′

i ) = gcd(nb′
0, . . . , nb′

i ) = n′ei . Thus n
ei

= n′
e′

i

and consequently bi
ei

= b′
i

e′
i

for all i ∈ {1, . . . , k} since bi
n = b′

i
n′ . �


Theorem 5.2 Let n = i0( f, x) > 1 and suppose that i0( f,g)
i0(x,g)

>
ek−1bk

n for an integer

k ∈ {1, . . . , h}. Then k ≤ h′ and bi
n = b′

i
n′ for all i ∈ {1, . . . , k}. The first k key

polynomials f0, . . . , fk−1 of f are the first k key polynomials of g.

Proof Let us start with

ni0(g, fi−1) = n′bi for i ∈ {1, . . . , k}. (12)
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Fix i ∈ {1, . . . , k} and consider the power series f, fi−1 and g. We have

dx ( f, fi−1) = ei−1bi
n2 , dx ( f, g) = i0( f,g)

nn′ >
ek−1bk

n2 (by assumption) and dx (g, fi−1) =
ei−1i0(g, fi−1)

nn′ . Since dx ( f, fi−1) < dx ( f, g) by the STI we get dx (g, fi−1) =
dx ( f, fi−1), which implies (12).

Remark that

n′ ≡ 0

(
mod

n

ek

)
. (13)

Indeed, we may write ek = a0b0 + a1b1 + · · · + akbk with a0, . . . , ak ∈ Z since
ek = gcd(b0, . . . , bk). Hence we get ekn′ = (a0n′)n + a1(n′b1)+ · · ·+ ak(n′bk) ≡ 0
(mod n) by (12) and consequently n′ ≡ 0 (mod n

ek
). �


Property 5.3 Let i > 0 be an integer. Then dx (g, fi−1) = ei−1bi
n2 for i ≤ k,

dx (g, gi−1) = e′
i−1b′

i
(n′)2 for i ≤ h′, and dx ( fi−1, gi−1) = ei−1e′

i−1i0( fi−1,gi−1)

nn′ for

i ≤ min(k, h′).

Proof We have dx (g, fi−1) = ei−1i0(g, fi−1)

n′n = ei−1bi
n2 by (12). The formulae for

dx (g, gi−1) and dx ( fi−1, gi−1) follow from the definitions. �

We have

h′ ≥ 1 and
b1

n
= b′

1

n′ . (14)

From (13) it follows that n′ > 1 since n
ek
> 1 for k > 0. Thus h′ ≥ 1 and we may

apply Property 5.3 for i = 1. We get dx (g, f0) = b1
n �∈ N, dx (g, g0) = b′

1
n′ �∈ N and

dx ( f0, g0) = i0( f0, g0) ∈ N. By the STI we obtain b1
n = b′

1
n′ .

Property 5.4 Let i > 0 be an integer such that i < k, i ≤ h′ and
b j
n = b′

j
n′ for all

j ≤ i . Then i < h′ and bi+1
n = b′

i+1
n′ .

Proof From the assumption
b j
n = b′

j
n′ for all j ≤ i and from Lemma 5.1 we get ei

n = e′
i

n′ .
By (13) we may write n′ = l n

ek
, where l > 0 is an integer. Thus e′

i = n′ ei
n = l ei

ek
> 1

since i < k. From e′
i > 1 we get obviously i < h′. Now we may apply Property

5.3 for the index i + 1 since i + 1 ≤ k and i + 1 ≤ h′. We get dx (g, fi ) = ei bi+1
n2 ,

dx (g, gi ) = e′
i b′

i+1
(n′)2 and dx ( fi , gi ) = ( ei

n

) (
e′

i
n′

)
i0( fi , gi ). Recall that ei

n = e′
i

n′ . Note

that dx (g, fi ) �= dx ( fi , gi ). Indeed if we had dx (g, fi ) = dx ( f, gi ) then we would
get bi+1 = ei i0( fi , gi ) which is impossible since bi+1 �≡ 0 (mod ei ). Similarly we
check that dx (g, gi ) �= dx ( fi , gi ). Using the STI we get dx (g, fi ) = dx (g, gi ), which

implies bi+1
n = b′

i+1
n′ . �


Now we can finish the proof of Theorem 5.2.

From Properties (14) and 5.4 we conclude that k ≤ h′ and bi
n = b′

i
n′ for i ∈

{1, . . . , k}, which proves the first part of Theorem 5.2. Let i ∈ {0, 1, . . . , k − 1}. By
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Property (12) i0(g, fi−1) = n′bi
n = b′

i since bi
n = b′

i
n′ . Moreover degy( fi−1) = n

ei−1
=

n′
e′

i−1
so fi−1 is a key-polynomial of g. �


Remark 5.5 Under the notations and assumptions of Theorem 5.2, we get

i0(g, f )

i0(x, f )
= i0( f, g)

i0(x, g)

i0(x, g)

i0(x, f )
>

ek−1bk

n

n′

n
= e′

k−1

n′
b′

k

n′ n′ = e′
k−1b′

k

n′ .

Let f ∈ K[[x, y]] be an irreducible power series such that { f = 0} �= {x = 0}.
Let n = i0( f, x) > 1 and charx f = (b0, . . . , bh), b0 = n.

Lemma 5.6 Let g = g(x, y) ∈ K[[x, y]] be an irreducible power series such that

{g = 0} �= {x = 0} and let k be an integer such that 1 ≤ k ≤ h. If i0( f,g)
i0(g,x)

>
ek−1bk

n then

i0(g, x) ≡ 0
(

mod n
ek

)
. If, additionally, i0(g, x) = n

ek
then charx g =

(
b0
ek
, . . . ,

bk
ek

)
.

Proof The lemma follows from Theorem 5.2 and Lemma 5.1. �

Theorem 5.7 Let g ∈ K[[x, y]] be a power series such that i0(g, x) = n

ek
and

i0( f, g) > nkbk for a k ∈ {1, . . . , h}. Then g is irreducible and charx g =(
b0
ek
, . . . ,

bk
ek

)
.

Proof Suppose that i0( f, g) > nkbk and let g = g1 · · · gs with irreducible g j ∈
K[[x, y]], for j ∈ {1, . . . , s}. Then there exists j ∈ {1, . . . , s} such that

i0( f, g j )

i0(g j , x)
>

ek−1bk

n
. (15)

Indeed, suppose that inequality (15) is not true. Then i0( f, g j ) ≤ ek−1bk
n i0(g j , x) for

all j ∈ {1, . . . , s} and we get i0( f, g) = ∑s
j=1 i0( f, g j ) ≤ ∑s

j=1
ek−1bk

n i0(g j , x) =
ek−1bk

n i0(g, x) = nkbk which contradicts the assumption about i0( f, g). The inequality
(15) implies by Lemma 5.6 that i0(g j , x) = q n

ek
for some integer q > 0. On the other

hand i0(g j , x) ≤ i0(g, x) = n
ek

. Therefore q = 1 and i0(g j , x) = i0(g, x). Recall that
g j divides g, g j is irreducible and ord g j (0, y) = ord g(0, y), thus g j is associated

with g, which proves the irreducibility of g. We get charx g =
(

b0
ek
, . . . ,

bk
ek

)
from the

second part of Lemma 5.6. �

Corollary 5.8 (Abhyankar–Moh irreducibility criterion) If i0(g, x)=n and i0( f, g)>
nhbh then g is irreducible and charx g = charx f .

Notes
The Abhyankar–Moh irreducibility criterion was proved in [3,4] (Lemma 3.4) and
explained in details in [2] (Theorem 12.4). The original version of the criterion was
given for meromorphic curves. Using Puiseux series the authors had to assume n �≡ 0
(mod char K). The version of the criterion presented in this paper is borrowed from
[25] where the result is proved for the case char K = 0.
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6 Characterization of the semigroups associated with branches

In this section we give a new proof of the well-known theorem on the existence of
branches with given semigroup (see [7] and [10]). Following Teissier [44] we give
explicitly the equation of a plane curve with given characteristic. Our proof is written
in the spirit of this paper, we do not use the technique of deformations. Here is the
main result of this section.

Theorem 6.1 Let
(
b0, . . . , bh

)
be an n-characteristic sequence. Suppose there exists

a distinguished irreducible polynomial fh−1 ∈ K[[x]][y] such that charx fh−1 =(
b0

eh−1
, . . . ,

bh−1
eh−1

)
. Let f0, . . . , fh−2 ∈ K[[x]][y] be a sequence of key polynomials of

fh−1. Let a0, . . . , ah−1 be the (unique) sequence of integers such that a0b0 + a1b1 +
· · · + ah−1bh−1 = nhbh, where 0 < a0 and 0 ≤ ai < ni for i ∈ {1, . . . , h − 1} and
let c ∈ K\{0}. Put fh = f nh

h−1 + cxa0 f a1
0 · · · f ah−1

h−2 . Then
1. fh is a distinguished irreducible polynomial of degree n, that is, i0( fh, x) =

degy fh ,

2. charx fh = (
b0, . . . , bh

)
and f0, . . . , fh−1 are key polynomials of fh.

Proof Since fh−1 is a distinguished polynomial of degree n
eh−1

and a0 > 0, we have

i0( fh, x) = i0( f nh
h−1 + cxa0 f a1

0 · · · f ah−1
h−2 , x) = i0( f nh

h−1, x)

= nhi0( fh−1, x) = nh
n

eh−1
= n.

To calculate degy fh observe that degy f nh
h−1 = nh degy fh−1 = nh

n
eh−1

= n and

degy cxa0 f a1
0 · · · f ah−1

h−2 = a1
n
e0

+· · ·+ah−1
n

eh−2
≤ (n1−1) n

e0
+· · ·+(nh−1−1) n

eh−2
=

n
eh−1

−1 < n. Therefore we get degy fh = n. The proof that fh is irreducible is harder.
We need auxiliary lemmas. �


Lemma 6.2 i0( fh, fh−1) = bh.

Proof

i0( fh, fh−1) = i0( f nh
h−1 + cxa0 f a1

0 · · · f ah−1
h−2 , fh−1) = i0(x

a0 f a1
0 · · · f ah−1

h−2 , fh−1)

= a0i0(x, fh−1)+ a1i0( f0, fh−1)+ · · · + ah−1i0( fh−2, fh−1)

= a0
b0

eh−1
+ a1

b1

eh−1
+ · · · + ah−1

bh−1

eh−1
= 1

eh−1
nhbh = bh .

�
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Lemma 6.3 There exists an irreducible factor φ of fh such that

i0( fh−1, φ)

i0(φ, x)
>

nh−1bh−1

n
.

Proof Let fh = φ1 · · ·φs with irreducible factors φi ∈ K[[x, y]] for i ∈ {1, . . . , s}.
Suppose that i0( fh−1,φi )

i0(φi ,x)
≤ nh−1bh−1

n for all i ∈ {1, . . . , s}. By Lemma 6.2 we get

bh = i0( fh−1, fh) =
s∑

i=1

i0( fh−1, φi ) ≤
s∑

i=1

nh−1bh−1

n
i0(φi , x)

= nh−1bh−1

n

s∑
i=1

i0(φi , x) = nh−1bh−1

n
i0( fh, x) = nh−1bh−1 < bh,

which is a contradiction. �

Lemma 6.4 Let φ be an irreducible factor of fh such that i0( fh−1,φ)

i0(φ,x)
>

nh−1bh−1
n . Then

there exists ν ∈ {1, . . . , nh} such that i0(φ, x) = ν b0
eh−1

and i0(φ, fk) = ν
bk+1
eh−1

for
k < h − 1.

Proof Recall that charx fh−1 =
(

b0
eh−1

, . . . ,
bh−1
eh−1

)
. Applying Lemma 5.6 to the

irreducible power series fh−1 and φ (note that nh−1bh−1
n = nh−1

bh−1
eh−1

n
eh−1

) we con-

clude that i0(φ, x) ≡ 0
(

mod n
eh−1

)
. Therefore we can write i0(φ, x) = ν n

eh−1

with ν ≤ eh−1 = nh since i0(φ, x) ≤ i0( fh, x) = n. Fix k < h − 1 and
consider the three branches { fk = 0}, { fh−1 = 0} and {φ = 0}. We get

dx ( fk, φ) = eh−1ek i0( fk ,φ)

νn2 , dx ( fh−1, φ) = i0( fh−1,φ)

i0(φ,x)
n

eh−1

>
nh−1bh−1

n
eh−1

n = eh−2bh−1
n2 ,

and dx ( fh−1, fk) = bk+1/eh−1
(n/eh−1)(n/ek)

= ek bk+1
n2 ≤ eh−2bh−1

n2 , for k < h − 1. Therefore
dx ( fh−1, fk) < dx ( fh−1, φ) and by the STI we get dx ( fh−1, fk) = dx ( fk, φ), which

implies i0( fk, φ) = ν
bk+1
eh−1

. �

Now we are in a position to check that fh is an irreducible power series. Let φ be an

irreducible factor of fh such that in Lemma 6.3. Since fh = f nh
h−1 +cxa0 f a1

0 · · · f ah−1
h−2

and φ is an irreducible factor of fh we get i0( f nh
h−1, φ) = i0(xa0 f a1

0 · · · f ah−1
h−2 , φ).

Therefore, by Lemma 6.4 we have

nhi0( fh−1, φ) = a0i0(x, φ)+ a1i0( f0, φ)+ · · · + ah−1i0( fh−2, φ)

= a0ν
b0

eh−1
+ a1ν

b1

eh−1
+ · · · + ah−1ν

bh−1

eh−1
= ν

eh−1
nhbh = νbh .

Since νbh ≡ 0 (mod nh) and bh , nh = eh−1 are coprime we get ν ≡ 0 (mod nh)
and ν = nh because 1 ≤ ν ≤ nh .

123



246 E. R. García Barroso, A. Płoski

From Lemma 6.4 we get i0(φ, x) = nh
b0

eh−1
= b0 = n = i0( fh, x). Since φ divides

fh we get fh = φψ in K[[x, y]] with ψ(0) �= 0. Therefore fh is irreducible.
Now we prove the second statement of the theorem. First we check that i0( fh, fk) =

bk+1 for k ∈ {0, 1, . . . , h − 1}. We have i0( fh, fh−1) = bh by Lemma 6.2. Therefore
we may assume that h > 1 and k < h − 1. Applying Lemma 6.4 to the power series

φ = fh we get i0( fh, fk) = nh
bk+1
eh−1

= bk+1 since ν = nh . Recall that degy fk = n
ek

for k ∈ {0, 1, . . . , h −1}. Using Lemma 4.1 we conclude that charx fh = (
b0, . . . , bh

)
and that f0, . . . , fh−1 is a sequence of key polynomials of fh . �

Theorem 6.5 (Bresinsky–Angermüller) Let b0, . . . , bh be a sequence of positive inte-
gers. Then the following two conditions are equivalent:
1. There is an irreducible power series f ∈ K[[x]][y] such that i0( f, x) = b0 and

b0, . . . , bh is the b0-minimal sequence of generators of the semigroup 	( f ).
2. The numbers b0, . . . , bh form a b0-characteristic sequence.

Proof The implication (1) �⇒ (2) follows from the Semigroup Theorem (Theorem
3.2). To check that (2) �⇒ (1) we proceed by induction on the length h of the
characteristic sequence using Theorem 6.1. If h = 0 then (b0) = (1) and we take
f = y. Let h > 0 and suppose that the implication (2) �⇒ (1) is true for h − 1.
Then there exists an irreducible distinguished polynomial fh−1 ∈ K[[x]][y] such that

	( fh−1) = N b0
eh−1

+· · ·+ N bh−1
eh−1

. Let f0, . . . , fh−2 be a sequence of key polynomials

of fh−1. Take f = f nh
h−1 + xa0 f a1

0 · · · f ah−1
h−2 , where 0 < a0 and 0 ≤ ai < ni for

i ∈ {1, . . . , h − 1} is the (unique) sequence of integers such that a0b0 + a1b1 +
· · · + ah−1bh−1 = nhbh . Then by Theorem 6.1 f is an irreducible power series and
	( f ) = Nb0 + · · · + Nbh . �


Let (b0, . . . , bh) be an n-characteristic sequence. For any k ∈ {1, . . . , h} we have
Bézout’s relation nkbk = ak0b0 + ak1b1 + · · · + akk−1bk−1, where ak0 > 0 and
0 ≤ aki < ni for i ∈ {1, . . . , k − 1}. Take c1, . . . , ch ∈ K\{0} and define in a
recurrent way the polynomials g0, . . . , gh by putting g0 = y, g1 = gn1

0 + c1xa10 =
yn/e1 + c1xb1/e1 ,. . . , gh = gnh

h−1 + ch xah0 gah1
0 · · · gahh−1

h−2 .

Theorem 6.6 (cf. [44] and [37]) The polynomials g0, . . . , gh are distinguished and

irreducible. We have charx gk =
(

b0
ek
, . . . ,

bh
ek

)
. The sequence g0, . . . gk−1 is a

sequence of key polynomials of gk.

Proof The theorem follows from Theorem 6.1 by induction on k. �

Notes
Theorem 6.5 characterizing the semigroups associated with branches is due to Bresin-
sky [10] (the case of characteristic 0) and to Angermüller [7] (the case of arbitrary char-
acteristic, see also [24]). Both authors consider only generic case, i.e. i0( f, x) = ord f .
Theorem 6.6 which gives an explicit equation of the branch with given semigroup was
obtained by Teissier by the method of deformations of the monomial curve associated
with a branch. Another proof was given by Reguera López in [37].
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7 Description of branches with given semigroup

We need two preliminary lemmas.

Lemma 7.1 Let f ∈ K[[x]][y] be a distinguished irreducible polynomial of degree
n > 0. Suppose that charx f = (b0, . . . , bh) , b0 = n and let f0, f1, . . . , fh−1 be a
sequence of key polynomials of f . Then any polynomial g ∈ K[[x]][y] of y-degree
strictly less than n has a unique expansion of the form

g =
∑

gα1,...,αh f α1
0 · · · f αh

h−1, gα1,...,αh ∈ K[[x]],

where 0 ≤ α1 < n1, ..., 0 ≤ αh < nh. Moreover
1. the y-degrees of the terms appearing in the right-hand side of the preceding equality

are all distinct,
2. i0( f, g) = inf{(ord gα1,...,αh )n + α1b1 + · · · + αhbh : 0 ≤ αi < ni for i =

1, . . . , h}.
Proof The existence and uniqueness of the expansion and the inequality for the degrees
holds for polynomials with coefficients in arbitrary integral domain (see [2], Sect. 2).
The formula for the intersection multiplicity follows from the observation that the
intersection multiplicities i0( f, gα1,...,αh f α1

0 · · · f αh
h−1) = (ord gα1,...,αh )n + α1b1 +

· · · + αhbh are pairwise distinct by the uniqueness of Bézout’s relation. �

Lemma 7.2 Under the notation and assumptions introduced above, if degy g < n/ek

then i0( f, g) = eki0( fk, g).

Proof Suppose that degy g < n/ek . Then by Lemma 7.1 we get

g =
∑

gα1,...,αh f α1
0 · · · f αh

h−1,

where 0 ≤ αi < ni , for i ∈ {1, . . . , h}. Since degy g < n/ek we have, by the first
statement of Lemma 7.1, αk+1 = · · · = αh = 0.

By Proposition 4.2 fk is an irreducible distinguished polynomial, charx fk =(
b0
ek
, . . . ,

bk
ek

)
and f0, . . . , fk−1 are key polynomials of fk . Therefore there exist

α1, . . . , αk such that

i0( fk, g) = (ord gα1,...,αk ,0,...,0)
n

ek
+ α1

b1

ek
+ · · · + αk

bk

ek
= 1

ek
i0( f, g)

and the lemma follows. �

Let φ, f ∈ K[[x]][y] be distinguished polynomials such that N = degy f

degy φ
is a

positive integer. Consider the φ-adic expansion of f :

f = φN + α1φ
N−1 + · · · + αN , degy αi < degy φ for i ∈ {1, . . . , N }.
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Put α0 = 1 and I = {i ∈ [0, N ] : i0(αi , φ) �= +∞}. We define the Newton polygon

x,φ( f ) of f with respect to the pair (x, φ) by setting


x,φ( f ) = convex
⋃
i∈I

{
(i0(αi , φ), N − i)+ R2≥0

}
.

The polygon
x,φ( f ) intersects the vertical axis in the point (0, N ) and the horizontal
axis in the point (i0(αN , φ), 0) = (i0( f, φ), 0) provided that i0( f, φ) �= +∞. Ifφ = y
then 
x,φ( f ) = 
x,y( f ) is the usual Newton polygon of f in coordinates (x, y).

In the sequel we use Teissier’s notation (see [45]): for any integers k, l > 0 we put
{

k

l

}
= convex{((k, 0)+ R2≥0) ∪ ((0, l)+ R2≥0)}.

Proposition 7.3 If f ∈ K[[x, y]] is an irreducible power series, charx f =
(b0, . . . , bh) and f0, f1, . . . , fh is a sequence of key polynomials of f then


x, fk−1( fk) =
{

bk/ek

ek−1/ek

}
.

Proof The fk−1-adic expansion of fk is of the form fk = f nk
k−1 +a1 f nk−1

k−1 +· · ·+ank ,
where degy ai <

n
ek−1

for i ∈ {1, . . . , nk}. By Proposition 4.3 we have i0( f, ai ) >

ibk for 0 < i < nk and i0( f, ank ) = nkbk . By Lemma 7.2 we get i0( f, ai ) =
ek−1i0( fk−1, ai ) for 0 < i ≤ nk . Therefore we have i0( fk−1, ai ) > i bk

ek−1
for 0 < i <

nk and i0( fk−1, ank ) = bk
ek

, which implies 
x, fk−1( fk) =
{

bk/ek

ek−1/ek

}
. �


Proposition 7.4 Let f be an irreducible distinguished polynomial of degree n > 1.
Let charx f = (b0, . . . , bh) and let φ ∈ K[[x]][y] be an (h − 1)-key polynomial of f .
Then
1. charxφ =

(
b0

eh−1
, . . . ,

bh−1
eh−1

)
,

2. 
x,φ( f ) =
{

bh

eh−1

}
.

Proof The proposition follows from Propositions 4.2 and 7.3. �

The following theorem is the main result of this section.

Theorem 7.5 Let (b0, . . . , bh) be an n-characteristic sequence (n > 1). Let f ∈
K[[x]][y] be a distinguished polynomial of degree n for which there exists an irre-
ducible distinguished polynomial φ ∈ K[[x]][y] such that

1. charxφ =
(

b0
eh−1

, . . . ,
bh−1
eh−1

)
,

2. 
x,φ( f ) =
{

bh

eh−1

}
.
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Then f is irreducible, charx f = (b0, . . . , bh) and φ is an (h − 1)- key polynomial
of f .

Proof Let φ0, . . . , φh−2, φh−1 = φ be a sequence of key polynomials of φ.
From the assumption about
x,φ( f ) it follows that if f = φnh +α1φ

nh−1+· · ·+αnh ,
degy αi <

n
eh−1

for i ∈ {1, . . . , nh} is the φ-adic expansion of f then

(1) i0(αnh , φ) = i0( f, φ) = bh,

and

(2) i0(αi , φ) > i
bh

nh
for 0 < i < nh

(note that gcd(nh, bh) = gcd(eh−1, bh) = eh = 1 whence the strict inequality in (2)).
There exists a unique sentence of integers l0, . . . , lh−1 such that l0b0 + · · · +

lh−1bh−1 = eh−1bh , where l0 > 0 and 0 ≤ li < ni for i ∈ {1, . . . , h − 1}. Therefore
we have i0(φ, αnh ) = bh = i0(φ, xl0φ

l1
0 · · ·φlh−1

h−2). Let c ∈ K be a constant such that

i0(φ, αnh − cxl0φ
l1
0 · · ·φlh−1

h−2) > i0(φ, αnh ) = bh . Put f̃ = φnh + cxl0φ
l1
0 · · ·φlh−1

h−2.

Then by Theorem 6.1 f̃ ∈ K[[x]][y] is an irreducible distinguished polynomial of
degree n, charx f̃ = (b0, . . . , bh) and φ is a key polynomial of degree n

eh−1
of f̃ .

We have i0( f, x) = i0( f̃ , x) = n. Let α̃nh = αnh − cxl0φ
l1
0 · · ·φlh−1

h−2 and consider

(3) i0( f̃ , f ) = i0(φ
nh + cxl0φ

l1
0 · · ·φlh−1

h−2, φ
nh + α1φ

nh−1 + · · · + αnh )

= i0( f̃ , α1φ
nh−1 + · · · + αnh−1φ + α̃nh )

≥ inf{i0( f̃ , α1φ
nh−1), . . . , i0( f̃ , αnh−1φ), i0( f̃ , α̃nh )}

since f̃ is irreducible. Fix i ∈ {1, . . . , nh − 1}. Then

(4) i0( f̃ , αiφ
nh−i ) = i0( f̃ , αi )+ (nh − i)i0( f̃ , φ) = eh−1i0(φ, αi )+ (nh − i)bh

since φ is an (h −1)-th key polynomial of f̃ and i0( f̃ , αi ) = eh−1i0(φ, αi ) by Lemma
7.2. Using (2) and (3) we get

(5) i0( f̃ , αiφ
nh−i ) > eh−1i

bh

eh−1
+ (nh − i)bh = nhbh

for 0 < i < nh . Moreover, again by Lemma 7.2

(6) i0( f̃ , α̃nh ) = eh−1i0(φ, α̃nh ) > eh−1i0(φ, αnh ) = eh−1bh .

Using (3), (5) and (6) we obtain i0( f̃ , f ) > eh−1bh and the theorem follows from
the Abhyankar–Moh irreducibility criterion (Corollary 5.8). �
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Using Proposition 7.4 and Theorem 7.5 we get a recurrent description of the class
of branches with given semigroup.

Theorem 7.6 Let (b0, . . . , bh) be an n-characteristic sequence (n > 1) and let f ∈
K[[x]][y] be a distinguished polynomial of degree n. Then the following two conditions
are equivalent
1. f is irreducible and charx f = (b0, . . . , bh),
2. there exists a distinguished irreducible polynomial φ ∈ K[[x]][y] such that

(a) charxφ =
(

b0
eh−1

, . . . ,
bh−1
eh−1

)
,

(b) 
x,φ( f ) =
{

bh

eh−1

}
.

To illustrate the above result let us write down

Corollary 7.7 Let f ∈ K[[x]][y] be a distinguished polynomial of degree n > 1
and let m > 0 be an integer such that gcd(n,m) = 1. Then f is irreducible with
charx f = (n,m) if and only if there exists a power series ψ(x) ∈ K[[x]], ψ(0) = 0
such that

f = (y + ψ(x))n + α1(x)(y + ψ(x))n−1 + · · · + αn(x),

where ord αi > i m
n for 0 < i < n and ord αn = m.

Theorem 7.8 (Abhyankar’s irreducibility criterion) Let f ∈ K[[x]][y] be a distin-
guished polynomial of degree n > 1. Assume that n �≡ 0 (mod char K). Then f is
irreducible if and only if there exists an n-characteristic sequence b0, . . . , bh such that
1. i0( f, ek−1

√
f ) = bk and

2. 
x, ek−1
√

f (
ek
√

f ) =
{

bk/ek

ek−1/ek

}
for k ∈ {1, . . . , h}.

Proof The conditions are necessary: if f is irreducible and charx f = (b0, . . . , bh)

then both statements hold by Theorem 4.5 and Proposition 7.3.
The conditions are sufficient: this assertion follows from Theorem 7.5 by induction

on the length h of the n-characteristic sequence. �

To check the first condition we determine the sequences b0, . . . , bh and e0, . . . , eh

such that
• b0 = n,
• bk = i0( f, ek−1

√
f ), ek = gcd(ek−1, bk) for k ∈ {1, . . . , h},

• e0 > · · · > eh = gcd(eh, i0( f, eh
√

f )).
The first condition holds if and only if eh = 1 and nk−1bk−1 < bk for k > 1.

Notes
The first description of the class of branches with given semigroup is due to Teissier
[44] (see also [14] and [27]). Our approach is inspired by the papers by Abhyankar
[1] and Kuo [28] (see also [31] and [8]). The generalization of the Newton polygon
introduced by Kuo in [28] is useful in Valuation Theory [43], Section 5. Our presen-
tation of Abhyankar’s irreducibility criterion differs from the original one. Another
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version of Abhyankar’s criterion is due to Cossart and Moreno-Socías [18] and [19] .
A criterion of irreducibility based on different ideas was given recently by [23]. The
g-adic expansions of polynomials and Newton polygons were applied to generalize the
classical Shönemann–Eisenstein irreducibility criterion in the early twentieth century
(see [33]).

Acknowledgments The authors are very grateful to the anonymous referees for the improvement of this
paper.
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