A Separation Condition for Polynomial Mappings

by

Arkadiusz PŁOSKI^(*) and Piotr TWORZEWSKI^(**)

Presented by S. LOJASIEWICZ on January 29, 1996

Summary. Some estimates of the Łojasiewicz exponent at infinity for a class of polynomial mappings are given.

1. A separation condition at infinity. Let $F = (F_1, \ldots, F_n) : \mathbb{C}^n \to \mathbb{C}^n$ be a dominating polynomial mapping and let $G : \mathbb{C}^n \to \mathbb{C}^n$ be a non-constant polynomial. For every $z = (z_1, \ldots, z_n) \in \mathbb{C}^n$ we put $|z| = \max\{|z_j| : j = 1, \ldots, n\}$. We say that F and G are separated at infinity if there are constants C, R > 0, and $q \in \mathbb{R}$ such that

$$|F(z)| \geqslant C|G(z)|^q$$
 for $|G(z)| \geqslant R$.

PROPOSITION 1.1. The following three conditions are equivalent:

- (1) F and G are separated at infinity,
- $(2) \ \{0\} \times \mathbb{C} \not\subset \overline{(F,G)(\mathbb{C}^n)},$
- (3) there is a polynomial $P: \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}$ such that P(F,G) = 0 and $P \mid \{0\} \times \mathbb{C} \neq 0$.

Proof. Let $V = \overline{(F,G)(\mathbb{C}^n)}$. Obviously, V is an irreducible algebraic subset of $\mathbb{C}^n \times \mathbb{C}$. Moreover, $\dim V = n$ because F is dominating.

Hence there exists an irreducible polynomial $P_0: \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}$ such that $V = P_0^{-1}(0)$. Clearly $\{0\} \times \mathbb{C} \not\subset V$ if and only if $P_0 \mid \{0\} \times \mathbb{C} \neq 0$. To see that our three conditions are equivalent it suffices to observe that for any polynomial $P: \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}$ we have $P \mid \{0\} \times \mathbb{C} \neq 0$ if and only if

¹⁹⁹¹ MS Classification: 14E99, 32B99.

Key words: polynomial mapping, geometric degree, regular separation.

^(*) Research supported by KBN Grant 2 P03A 079 08.

^(**) Research supported by KBN Grant 2 P03A 061 08.

P(w,t)=0 implies that $C|t|^q\leqslant |w|$ for some constants $C>0, q\in\mathbb{R},$ and large |t| (cf. [8], Lemma 3.1).

Let us consider an example.

Example 1.2. Let $F: \mathbb{C}^3 \to \mathbb{C}^3$ be given by the formula

$$F(x,y,z) = (xy+z, x(1+(xy+z)x^2y), y(1+(xy+z)x^2y)).$$

Then for every polynomial $G: \mathbb{C}^3 \to \mathbb{C}$ such that $\deg G = 1$ the pair F, G is not separated at infinity. Indeed, let $P: \mathbb{C}^3 \times \mathbb{C} \to \mathbb{C}$ be a polynomial such that P(F,G) = 0. It suffices to check by Proposition 1.1(3) that $P \mid \{0\} \times \mathbb{C} = 0$. Let us fix $a \in \mathbb{C} \setminus \{0\}$ and put

$$\varphi_a(t) = (a^{-2}t, -a^{-3}t^{-2}, a(1+t^{-1})) \text{ for } t \in \mathbb{C} \setminus \{0\}.$$

Then $F(\varphi_a(t)) = (a, 0, 0)$ if $t \neq 0$ and we get $P(a, 0, 0, G(\varphi_a(t))) = 0$ for $t \neq 0$. Since $G \neq 0$, $(G \circ \varphi_a)(\mathbb{C} \setminus \{0\})$ is dense in \mathbb{C} . Therefore P(a, 0, 0, t) = 0 for all $t \in \mathbb{C}$. Passing to the limit when $a \to 0$ we get $P \mid \{0\} \times \mathbb{C} = 0$.

Let ${}^hQ: \mathbb{C} \times \mathbb{C}^n \to \mathbb{C}$ be the homogenization of a polynomial $Q: \mathbb{C}^n \to \mathbb{C}$.

LEMMA 1.3. Suppose that the system of equations ${}^{h}F_{1} = \ldots = {}^{h}F_{n} = {}^{h}G = 0$ has no solutions on the hyperplane at infinity $z_{0} = 0$. Then $F = (F_{1}, \ldots, F_{n})$ and G are separated at infinity provided that $F^{-1}(0)$ is finite.

Proof. The mapping $(F,G): \mathbb{C}^n \to \mathbb{C}^{n+1}$ is proper, therefore the set $(F,G)(\mathbb{C}^n)$ is algebraic and we have $\overline{(F,G)(\mathbb{C}^n)}=(F,G)(\mathbb{C}^n)$. It is easy to see that condition (2) of Proposition 1.1 means that the set $F^{-1}(0)$ is finite.

Now, let $d(F) = (\mathbb{C}(Z) : \mathbb{C}(F))$ be the geometric degree of F, where $Z = (Z_1, \ldots, Z_n)$ (cf. [6], p. 40). If the fiber $F^{-1}(w)$ is finite we put

$$\delta_w(F) = d(F) - \sum_{z \in F^{-1}(w)} \text{mult}_z F,$$

where $\operatorname{mult}_z F$ denotes the multiplicity of F at z. We have always (cf. [7, 8])

$$0 \leqslant \delta_w(F) \leqslant \left(\prod_{i=1}^n \deg F_i\right) - \min_{i=1}^n (\deg F_i),$$

and $\delta_w(F) = 0$ for generic $w \in \mathbb{C}^n$. Let us put $d(F, G) = (\mathbb{C}(Z) : \mathbb{C}(F, G))$ for any polynomial G. We can state our main result

Theorem 1.4. Suppose that the fiber $F^{-1}(0)$ is finite and the pair F, G is separated at infinity. Then there are constants C, R > 0 such that

$$|F(z)|\geqslant C|G(z)|^{-\delta_0(F)/d(F,G)}\quad for\ |G(z)|\geqslant R.$$

Proof. Let us keep the notation introduced in the proof of Proposition 1.1. According to ([8], Lemma 3.1), there are C, R > 0 such that if $P_0(w,t) = 0$ and $|t| \ge R$, then $C|t|^q \le |w|$, where $q = \deg_T P_0(0,T) - \deg_T P_0(W,T)$. We have $P_0(F,G) = 0$ and P_0 is irreducible, therefore

$$\deg_T P_0(W,T) = (\mathbb{C}(F,G) : \mathbb{C}(F)) = d(F)/d(F,G)$$

and it suffices to check that

$$\deg_T P_0(0,T) \geqslant \sum_{z \in F^{-1}(0)} (\operatorname{mult}_z F) / d(F,G).$$

Let us assume that $\mu = \sum_{z \in F^{-1}(0)} \operatorname{mult}_z F \neq 0$, and let W be an open neighbourhood of the set $V \cap \{0\} \times \mathbb{C}$. There exist open neighbourhoods D of 0 and U of $F^{-1}(0)$ such that:

- (a) $F|U:U\to D$ is an analytic μ -sheeted branched covering,
- (b) $(F,G)(U) \subset W$.

Shrinking the neighbourhood W, if necessary, we can assume that all the fibres of the mapping $V \cap W \ni (w,t) \to w \in D$ have no more than $\deg_T P_0(0,T)$ points. For generic $a \in V$ we have $\#(F,G)^{-1}(a) = d(F,G)$. This implies $\mu \leqslant d(F,G) \deg_T P_0(0,T)$ and the proof is complete.

Let us note here that $\delta_0(F) = 0$ if and only if there are constants C, R > 0 such that $|F(z)| \ge C$ for $|z| \ge R$ (cf. [3]). Therefore, Theorem 1.4 is interesting only if $\delta_0(F) > 0$. Below we present some applications of this theorem to the polynomial mappings.

2. Convenient mappings. Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a dominating polynomial mapping. We say that F is *convenient* if there is a basis L_1, \ldots, L_n of the space $(\mathbb{C}^n)^*$ of linear forms on \mathbb{C}^n , such that F, L_i are separated at infinity for $i = 1, \ldots, n$.

PROPERTY 2.1. If $F: \mathbb{C}^n \to \mathbb{C}^n$ is convenient, then there is an open neighbourhood V of $0 \in \mathbb{C}^n$ such that $F^{-1}(w)$ is finite for all $w \in V$.

Proof. Choose polynomials P_i such that $P_i(F, L_i) = 0$ and $P_i \mid \{0\} \times \mathbb{C} \neq 0$ for i = 1, ..., n. There is a neighbourhood V of $0 \in \mathbb{C}^n$ such that $P_i \mid \{w\} \times \mathbb{C} \neq 0$ for every $w \in V$. Let $L : \mathbb{C}^n \to \mathbb{C}^n$ be the linear automorphism given by $L = (L_1, ..., L_n)$. Obviously, $L(F^{-1}(w))$ is finite for $w \in V$. Consequently, $F^{-1}(w)$ is finite if $w \in V$.

PROPERTY 2.2. Let $F = (F_1, ..., F_n)$ be a dominating polynomial mapping such that the system of homogeneous equations ${}^hF_1 = ... = {}^hF_n = 0$ has a finite number of solutions in the projective space $\mathbb{P}^n(\mathbb{C})$. Then F is convenient.

The proof follows easily from Lemma 1.3 and the definition of convenient mappings.

Using Theorem 1.4 we get the following sharper version of the main result of [8].

THEOREM 2.3. If $F = (F_1, \ldots, F_n) : \mathbb{C}^n \to \mathbb{C}^n$ is a convenient mapping, then there exist C, R > 0 such that

$$|F(z)| \geqslant C|z|^{-\delta_0(F)}$$
 for $|z| \geqslant R$.

Let us consider two examples.

Example 2.4 (cf. [1]). Let D > 1 be an integer and let us put

$$F(z) = (z_1^D, z_1 - z_2^D, \dots, z_{n-2} - z_{n-1}^D, 1 - z_{n-1}z_n^{D-1}).$$

Here $d(F) = D^n - D^{n-1}$ and $F^{-1}(0) = \emptyset$. Consequently, $\delta_0(F) = D^n - D^{n-1}$. The system of equations ${}^hF_1 = \ldots = {}^hF_n = 0$ has the only solution $(0:0:\ldots:0:1)$ in $\mathbb{P}^n(\mathbb{C})$, therefore F is convenient and $|F(z)| \geqslant C|z|^{-\delta_0(F)} = C|z|^{D^{n-1}-D^n}$ for C>0 and large |z|. By taking the restriction of F to the curve given by

$$\varphi(T) = \left(\frac{1}{T^{D^{n-1}(D-1)}}, \dots, \frac{1}{T^{D(D-1)}}, \frac{1}{T^{D-1}}, T\right)$$

one checks that $-\delta_0(F) = D^{n-1} - D^n$ is the biggest possible exponent in our estimate (*Łojasiewicz exponent*).

Example 2.5. Let

$$F(x, y, z) = (x, x^2y, xy^{s-1}z + 1)$$

where s > 1 is an integer. We have d(F) = 1, $F^{-1}(0) = \emptyset$. Hence $\delta_0(F) = 1$. One checks that $|F(x,y,z)| \ge C|(x,y,z)|^{-s}$ for a constant C > 0 and large |(x,y,z)|. Moreover, -s is the best exponent in this estimate and so $-\delta_0(F) = -1$ is not good. We see that the assumption that "F is convenient mapping" in Theorem 2.3 is essential.

DEPARTMENT OF MATHEMATICS, TECHNICAL UNIVERSITY, AL. TYSIĄCLECIA PAŃSTWA POLSKIEGO 7, PL-25-314 KIELCE (AP)

E-mail: mat-ap@srv1.tu.kielce.pl

(ZAKŁAD MATEMATYKI, POLITECHNIKA ŚWIĘTOKRZYSKA)

INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNIVERSITY, REYMONTA 4, PL-30-059 KRA-KÓW (PT)

E-mail: tworzews@im.uj.edu.pl (INSTYTUT MATEMATYKI UJ)

REFERENCES

- [1] W. D. Brownawell, Bound for the degrees in the Nullstellensatz, Ann. Math., 126 (1987) 577-591.
- [2] J. Chądzyński, T. Krasiński, On the Łojasiewicz exponent at infinity for polynomials mappings C^2 into C^2 and components of polynomial automorphisms of C^2 , Ann. Polon. Math., 57 (1992) 291-302.
- [3] Z. Jelonek, The set of points at which a polynomial mapping is not proper, Ann. Polon. Math., 58 (1993) 259-266.
- [4] J. Kollar, Sharp effective Nullstellensatz, J. Amer. Math. Soc., 1 (1988) 963-975.
- [5] S. Łojasiewicz, Introduction to Complex Analytic Geometry, Birkhäuser Verlag, Basel 1991.
- [6] D. Mumford, Algebraic Geometry, I. Complex Projective Varieties, Springer-Verlag, Berlin 1976.
- [7] A. Płoski, On the growth of proper polynomial mappings, Ann. Polon. Math., 45 (1985) 297-309.
- [8] A. Płoski, An inequality for polynomial mappings, Bull. Pol. Ac.: Math., 40 (1992) 265-269.