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Summary. Some estimates of the .o Jasiewicz exponent at infinity for a class of polynomial
mappings are given.

1. A separation condition at infinity. Let F = (Fy,.. G FR):Ct —
C" be a dominating polynomial mapping and let G : C* — C" be a non-
constant polynomial. For every z = (z, ... yzn) € C™ we put |2| = max{|z;| :
J =1,...,n}. We say that F' and G are separated at infinity if there are
constants C, R > 0, and ¢ € R such that

[F(2)] > CIG()[* for |G(2)] > R.

PROPOSITION 1.1. The following three conditions are equivalent:

(1) F and G are separated at infinity,

(2) {0} x C ¢ (F,G)(Cm),

(3) there is a polynomial P : C* x C — C such that P(F,G) =0 and
P | {0} x C#o0.

Proof. Let V = (F,G)(C). Obviously, V is an irreducible algebraic
subset of C* x C. Moreover, dimV = n because F is dominating.

Hence there exists an irreducible polynomial Py : C* x C — C such that
V = P;Y(0). Clearly {0} x C ¢ V if and only if Py | {0} x C # 0. To
see that our three conditions are equivalent it suffices to observe that for
any polynomial P : C* x C — C we have P | {0} x C # 0 if and only if
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P(w,t) = 0 implies that Clt|? < |w| for some constants C' > 0,9 € R, and
large (¢ (cf. [8], Lemma 3.1). 0

Let us consider an example.

~Ezample 1.2. Let F: C3 — C3 be given by the formula
F(z,y,2) = (zy + 2,2(1 + (zy + 2)2%y), y(1 + (zy + 2)z%y)).
Then for every polynomial G : C® — C such that deg G = 1 the pair F,G
is not separated at infinity. Indeed, let P : C3 x C — C be a polynomial
such that P(F,G) = 0. It suffices to check by Proposition 1.1(3) that P |
{0} xC=0. Let us fix a € C\ {0} and put
ea(t) = (a7t —a"3t~2, a(1+t™1)) forte C\ {0}.

Then F(p,(t)) = (a,0,0) if ¢ # 0 and we get P(a,0,0, G(pa(t))) = 0 for
t # 0. Since G # 0, (Gop,)(C\{0}) is dense in C. Therefore P(a,0,0,t) =0
for all ¢ € C. Passing to the limit when a — 0 we get P | {0} x C =0.

Let Q) : CxC™ — C be the homogenization of a polynomial Q : C* — C.

LEMMA 1.3. Suppose that the system of equations "F} = . = bR, =
"G = 0 has no solutions on the hyperplane at wnfinity zog = 0. Then F =
(F1,...,F,) and G are separated at infinity provided that F=1(0) is finite.

Proof. The mapping (F,G) :C™ - Cntl g proper, therefore the set
(F,G)(C™) is algebraic and we have (F,G)(C") = (F, G)(C™). 1t is easy
to see that condition (2) of Proposition 1.1 means that the set F~1(0) is
finite. O

Now, let d(F) = (C(2) : C(F)) be the geometric degree of F, where
Z = (Zy,...,2Zy) (cf. [6], p. 40). If the fiber F~1(w) is finite we put
bu(F)=d(F)~ 3" mult,F,
z€F~1(w)
where mult, F' denotes the multiplicity of F' at z. We have always (cf. [7, 8])

0<6,(F) < ( fIdegE-) — min(deg F}),
i=1 B

and éy, (F) = 0 for generic w € C™. Let us put d(F,G) = (C(Z) : C(F, G))
for any polynomial G. We can state our main result

THEOREM 1.4. Suppose that the fiber F~1(0) is finite and the pair F,G
s separated at infinity. Then there are constants C, R > 0 such that

[F(2)] 2 CIG(2)| " FVAEE) 1o 1G(2)] > R.
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Proof. Let us keep the notation introduced in the proof of Proposi-
tion 1.1. According to ([8], Lemma 3.1), there are C,R > 0 such that if
Po(w,t) = 0 and [¢| > R, then C|t|? < |w|, where ¢ = degy Fy(0,T) —
degr Po(W,T). We have Py(F,G) = 0 and P, is irreducible, therefore

degr Po(W,T) = (C(F,G) : C(F)) = d(F)/d(F,G)
and it suffices to check that

degr Po(0,7) > ) (mult,F)/d(F,G).
zEF-1(0)

Let us assume that p = ZzEF—l(O) mult, F' # 0, and let W be an open
neighbourhood of the set V' N {0} x C. There exist open neighbourhoods D
of 0 and U of F~1(0) such that:

(a) F|U : U — D is an analytic y-sheeted branched covering,
(b) (F,G)(U) c W.

Shrinking the neighbourhood W, if necessary, we can assume that all
the fibres of the mapping VN W 3 (w,t) —» w € D have no more than
degy Po(0,T) points. For generic a € V we have #(F,G)"(a) = d(F, Q).
This implies u < d(F;G) degy Py(0, T') and the proof is complete. O

Let us note here that §o(F) = 0 if and only if there are constants C,R >
0 such that [F(z)| > C for |z| > R (cf. [3]). Therefore, Theorem 1.4 is
interesting only if 6y(F) > 0. Below we present some applications of this
theorem to the polynomial mappings.

2. Convenient mappings. Let F : C* — C" be a dominating poly-
nomial mapping. We say that F is convenient if there is a basis Lq,...,L,
of the space (C™)* of linear forms on C", such that F, L; are separated at
infinity for 1 = 1,..., n.

PROPERTY 2.1. If F : C* — C™ s convenient, then there is an open
neighbourhood V' of 0 € C* such that F~'(w) is finite for allw € V.

Proof. Choose polynomials P; such that Fi(F,L;) =0 and P; | {0} x
C#0fori=1,...,n There is a neighbourhood V of 0 € C™ such that
P | {w} x C # 0 for every w € V. Let L : C* — C™ be the linear automor-
phism given by L = (L, ..., L,). Obviously, L(F~!(w)) is finite for w € V.
Consequently, F~!(w) is finite if w € V. O

PROPERTY 2.2. Let F = (Fy,... , ) be a dominating polynomial map-
ping such that the system of homogeneous equations "Fy = .., = B, =0
has a finite number of solutions in the projective space P*(C). Then F is
convenient.
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The proof follows easily from Lemma 1.3 and the definition of convenient
mappings.

Using Theorem 1.4 we get the following sharper version of the maijn
result of [8].

THEOREM 2.3. If F = (Fy,... yFr) : C* — C" is a convenient mapping,
then there exist C, R > 0 such that

|F(2)| > C|z|‘6°(F) for |z| > R.

Let us consider two examples.

Ezample 2.4 (cf. [1]). Let D > 1 be an integer and let us put

F(2) = (2P, 2 - 22z — zP 11— Zn_12271).
Here d(F') = D™ —D"~1 and F~1(0) = 0. Consequently, &, (F)=D"-D" 1,
The system of equations *F} = ..., =*F, = ( has the only solution (0 : 0 :

-+ 2 0: 1) in P*(C), therefore F is convenient and [F(2)] > Clz|~%F) =
Clz|P" 7' =D" for C > 0 and large |z|. By taking the restriction of F to the
curve given by

1 1 1
(p(T) = (TDn—1(D_1) 1erey TD(D-1)’ TD-1 :T)

one checks that —o(F) = D"~1 — D" i5 the biggest possible exponent in
our estimate (Lojasiewicz ezponent).

Ezample 2.5. Let
F(z,y,2) = (z,2%y,2y° 'z + 1)

where s > 1 is an integer. We have d(F) =1, F~1(0) = (. Hence 0o (F) =
1. One checks that |F(z,y, z)| > C|(z,y,2)|~* for a constant C' > 0 and
large |(z,y, z)|. Moreover, —s is the best exponent in this estimate and so
—60(F) = —1 is not good. We see that the assumption that “F is convenient
mapping” in Theorem 2.3 is essential.
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