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Problem statement

Private information retrieval (PIR):

Consider a set of files Fy, . . ., Fi, stored on a remote system.
One wants to retrieve one file F; privately, that is, by hiding the value of i to the system.

Is it possible?
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Problem statement

Private information retrieval (PIR):

Consider a set of files Fy, . . ., Fi, stored on a remote system.
One wants to retrieve one file F; privately, that is, by hiding the value of i to the system.

Is it possible?

Applications: access to medical data, geoprivacy, ...

Trivial solution: download all files.
» perfect privacy: no information
» bad download rate...
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Definition of PIR

Introduced in: % Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.
Generally, assume that 1 servers Sy, ..., S, store (in some way) the files Fy, ..., Fy.
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Definition of PIR

Introduced in: [% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.
Generally, assume that 1 servers Sy, ..., S, store (in some way) the files Fy, ..., Fy.

A Private Information Retrieval protocol is a set of algorithms (Q, A, R).
In order to retrieve file

n 9 |t n
1

1. Query generation:

q = (ql,...,qn)%Q(l.) l Y

("2

Send query g; to server S;.

2. Response: server S; computes and sends back
a response

1’]' = A(q]‘,F|5/,)

3. Local reconstruction of the desired file:

=TR(q,r11i). —

3/31



4/31

Example

n = 2 servers storing a replica of k = 5 files
Fi,...,F5

Goal: retrieve file 5.

Fy F
F3 F3
Fy Fy
Fs Fs
S1 Sy




n = 2 servers storing a replica of k = 5 files
Fi,...,F5

Goal: retrieve file I,. 7 = {14} 7 ={1,2,4}
1. Query generation. Pick at random a subset

I1C{1,...,5}, and define:
_ Fy Fy

— query q; = I to server Sy

— query g =1 A {2} to server S,

Fy
F3 F3
Fy Fy
F5 F5
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n = 2 servers storing a replica of k = 5 files
Fi,...,F5

Goal: retrieve file F. 7 = {1,4} I 7 ={1,2,4}
r T,
1. Query generation. Pick at random a subset ! :

I1C{1,...,5}, and define: F F
— query q; = I to server Sy 1 !
— query g =1 A {2} to server S, :
2. Responses. Each server receives a subset F
J C{1,...,5}, and computes the XOR (=bitwise F
sum) of files indexed by J. Fs 3
Fy Fy
Fs Fs
51 Sy
computes computes

n=F®F n=F&hok
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n = 2 servers storing a replica of k = 5 files
Fi,...,F5

rn @& =F

Goal: retrieve file I,. 7 = {14} I 7 ={1,2,4}
r T,
. Query generation. Pick at random a subset ! 2

I1C{1,...,5}, and define:
Fy Fy
— query q; = I to server Sy
— query g =1 A {2} to server S, :
. Responses. Each server receives a subset F
J C{1,...,5}, and computes the XOR (=bitwise F
sum) of files indexed by J. Fs 3
. Reconstruction. One gets file /', by XORing the two r r
responses. 4 4
Fs Fs
3 S,
computes computes
rn=F®Fy n=F&F ®F,




Z =2 sle:rvers storing a replica of k = 5 files HBr, =
1/ rrty 5

Goal: retrieve file . 7 = {14} I 7 ={1,2,4}
r T,
1. Query generation. Pick at random a subset ! :

I1C{1,...,5}, and define: F F
— query q; = I to server Sy ! .

— query g =1 A {2} to server S, :
2. Responses. Each server receives a subset B2

J C{1,...,5}, and computes the XOR (=bitwise F
sum) of files indexed by J. Fs 3

3. Reconstruction. One gets file [, by XORing the two r r
responses. 4 *
Upload: 2 x 5 = 10 bits to transmit to the servers Fs Fs
Download: 2|F| bits to receive from the servers S, S,

Server computation: XOR of 3 |F| bits in average computes computes

Client computation: XOR of 2|F| bits

n=F®F n=F&hok
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Privacy

The adversary: a collusion of servers = a subset of servers {S; : j € T}, where T C [1,n], which
exchange information about queries.

t:=max{|T|,T C [1,n] is a collusion} > 1
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t:=max{|T|,T C [1,n] is a collusion} > 1

o Information-theoretic (IT) privacy:
I(i;q7) =0, VT C[1,n]|T| <t

¢ Computational privacy: by varying the index i, distributions of queries g/ = Q(i)| are computa-
tionally indistinguishable.
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The adversary: a collusion of servers = a subset of servers {S; : j € T}, where T C [1,n], which
exchange information about queries.

t:=max{|T|,T C [1,n] is a collusion} > 1

o Information-theoretic (IT) privacy:
I(i;q7) =0, VT C[Ln]|T| <t

¢ Computational privacy: by varying the index i, distributions of queries g/ = Q(i)| are computa-
tionally indistinguishable.

Theorem [CGKS95, CG97]. If t = n (in particular if n = 1 server), then:
— for IT privacy, no better solution than full download,

— computational privacy is possible, but remains expensive as of now.
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Main parameters of PIR schemes

We focus on IT-privacy
(hence we need n > 2 servers)
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Main parameters of PIR schemes

We focus on IT-privacy
(hence we need n > 2 servers)

Parameters to be taken into account:

— communication complexity (upload and download)

computation complexity (client and servers)

global server storage overhead

— maximum size of collusions ()

Several possible settings:

replicated database vs. coded database

— unresponsive or byzantine servers

small entries vs. large entries

bounded vs. unbounded number of entries in the database

— dynamic database vs. static database
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Seminal work [CGKS’95-98]

[% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

16 files are replicated over 4 servers.
Files are indexed by pairs (i,j) € {1,2,3, 412
Assume one wants to retrieve file F 5.
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Seminal work [CGKS’95-98]

[% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

16 files are replicated over 4 servers. Queries are Cartesian products I x J.
Files are indexed by pairs (i,]) € {1,2,3,4}> We add/remove indices i and j from I and ] de-
Assume one wants to retrieve file F 5. pending on the server.

q = {1} x{2,3} 2 ={14} x{2,3} | 45={1} x{2,3} ga = {1,4} x{2,7}
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Seminal work [CGKS’95-98]

[% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

16 files are replicated over 4 servers. Queries are Cartesian products I x J.
Files are indexed by pairs (i,]) € {1,2,3,4}> We add/remove indices i and j from I and ] de-
Assume one wants to retrieve file F 5. pending on the server.

n={x{23)  p=(49x23 4 | p={Ux27  a={1yx2H
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider k files F;; where (i,j) € [1,£)? and k = (2.
Files are replicated over n = 4 servers Sg, So1, S10, S11-
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider k files F;; where (i,j) € [1,£)? and k = (2.
Files are replicated over n = 4 servers Sg, So1, S10, S11-
Goal: retrieve ; ;, for 1 <iy,i, < 2.

l

1. Query generation: pick at random two subsets Xj, X, of
[1,]. Then send:

-( Xy , X, )toserverSy,
- (X1A{i1}, Xy )toserver Sy,
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% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider k files F;; where (i,j) € [1,£)? and k = (2.
Files are replicated over n = 4 servers Sg, So1, S10, S11-
Goal: retrieve ; ;, for 1 <iy,i, < 2.

l
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider k files F;; where (i,j) € [1,£)? and k = (2.
Files are replicated over n = 4 servers Sg, So1, S10, S11-
Goal: retrieve ; ;, for 1 <iy,i, < 2.

l

1. Query generation: pick at random two subsets Xj, X, of

[1,]. Then send:
- X; , Xp )toserver Sy,
XiA{i1}, X, ) toserver Sy,
)
)

X1, XA{ir}) to server Sy,

¢ —

A~~~

XlA{/.\ },XzA{[’:} to server 51].
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider k files F;; where (i,j) € [1,£)? and k = (2.
Files are replicated over n = 4 servers Sg, So1, S10, S11-
Goal: retrieve ; ;, for 1 <iy,i, < 2.

l

1. Query generation: pick at random two subsets Xj, X, of
[1,]. Then send:
-( Xy , X, )toserverSy,
- (X1A{i1}, Xp )toserver Sy,
- ( Xy ,XaA{ir}) toserver Sy,
¢ - (XlA{/\ },XzA{[’:}) to server 51].
2. Answers: at reception of (Z1,Z,), each server S;
iy computes R; = @,cz, xz, Fz and sends back R;.

XOR this data
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Seminal work [CGKS’95-98]

% Private Information Retrieval. Chor, Goldreich, Kushilevitz, Sudan. FOCS. 1995.

1st generalization: consider k files F;; where (i,j) € [1,£)? and k = (2.
Files are replicated over n = 4 servers Sg, So1, S10, S11-
Goal: retrieve ; ;, for 1 <iy,i, < 2.

¢

1. Query generation: pick at random two subsets Xj, X, of

XORed 2x  XORed 4x [1,£]. Then send:
X1, Xz to server Sqp,

- ( )
- (X1A{i1}, Xy )toserver Sy,
- ( X3 ,XaA{ir}) toserver Sy,
¢ - (XlA{I.\},XzA{Z'j}) to server Sll~
2. Answers: at reception of (Z1,Z,), each server S;
) computes R; = @z, xz, Fz and sends back R;.
I 3. Reconstruction: compute the XOR of the 4 files R; and

retrieves I'; ;.

i
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Features of the PIR scheme in [CGKS’95-98]

Correct, and secure if no collusion.
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Features of the PIR scheme in [CGKS’95-98]

Correct, and secure if no collusion.

Quantitative results. Assume the k files have same size |F|.
With n = 4 servers,

» Communication: 8v/k uploaded bits, 4|F| downloaded bits,
> Storage: replication of all files over 4 servers,

> Complexity:

for each server: in average, XOR of (¢/ 2)2 = k/4 files
for the user: XOR of 4 files.
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Features of the PIR scheme in [CGKS’95-98]

Correct, and secure if no collusion.

Quantitative results. Assume the k files have same size |F|.
With n = 4 servers,

» Communication: 8v/k uploaded bits, 4|F| downloaded bits,
> Storage: replication of all files over 4 servers,
> Complexity:

for each server: in average, XOR of (¢/ 2)2 = k/4 files
for the user: XOR of 4 files.

Generalizable to n = 2¥ servers:
» Communication: b2Pk!/? = nlog(n)k'/1°8(") uploaded bits, n|F| downloaded bits,
> Storage: replication of all files over n servers,
» Complexity:

» for each server: in average, XOR of k/ files
P for the user: XOR of n files.
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Timeline

e 1995: first definition [CGKS95]

© 2000: reduction from smooth locally decodable codes [KT00]

¢ 2000-10’s: many improvements
» PIR with 3 servers and subpolynomial communication [Yek08, Efr09]
» PIR with 2 servers and subpolynomial communication [DG16]
> lower storage overhead with PIR codes [FVY15]

¢ 2016-now: capacity-achieving schemes, schemes dedicated to storage systems
» capacity of PIR [S]17, BU18]
> (nearly) capacity-achieving schemes [SRR14, CHY15, TR1S6, ...]
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Outline

2. PIR schemes with low computation and storage
Transversal designs and codes
A PIR scheme with transversal designs
Collusion-resistant PIR schemes with weighted lifted codes

10/31



Context

Previous scheme:
» moderate communication complexity
> computationally inefficient (linear in |F|)

> huge storage overhead (replicas of |F|)
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> smaller storage overhead thanks to a pre-encoding and a distribution of the database

11/31



Context

Previous scheme:
» moderate communication complexity
> computationally inefficient (linear in |F|)

> huge storage overhead (replicas of |F|)

Our goal:
» moderate communication complexity
» optimal computation (one read for each server)

> smaller storage overhead thanks to a pre-encoding and a distribution of the database

Tools: coding theory and combinatorics
» transversal designs and associated codes,
> “lifted” codes.

11/31



Outline

2. PIR schemes with low computation and storage
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Coding theory

A (linear) code C is a k-dimensional subspace of ]FZ;

Any code admits parity-check matrices H € ]Ff,"_k) “" such that

C={ceF!|Hc=0}.
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Coding theory

A (linear) code C is a k-dimensional subspace of ]FZ;

Any code admits parity-check matrices H € ]Ff,"_k) “" such that

C={ceF!|Hc=0}.

Terminology:
— h € RowSpan(H) is a parity-check equation for C.
— Support: supp(h) := {i € {1,...,n},h; =0}
— Weight: wt(h) := |supp(h)|.
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Coding theory

A (linear) code C is a k-dimensional subspace of ]Fg

Any code admits parity-check matrices H € ]F;”_k) “" such that

C={ceF!|Hc=0}.

Terminology:
— h € RowSpan(H) is a parity-check equation for C.
— Support: supp(h) := {i € {1,...,n},h; =0}
- Weight: wt(h) := |supp(h)|.

Important remark. If r = wt(h) and i € supp(h), then for every ¢ € C, one can recover ¢; € F; by
accessing at most r — 1 other coordinates ¢; of the codeword c:

1
Ci = —+— Z h]C]

i 1 e cuppli)\ {1}

In that case we call supp(h) \ {i} a helper set for i.
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Our goal. Design a code C C ]F;l such that, for every i € {1,...,n}, there exists a set of helper sets
which uniformly covers {1,...,n}.
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Our goal. Design a code C C ]F;l such that, for every i € {1,...,n}, there exists a set of helper sets
which uniformly covers {1,...,n}.

» This will provide a way to recover c; by accessing uniformly at random other coordinates of c.
» Querying these "random coordinates” will leak no information about i to the servers.
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Our goal. Design a code C C ]F;l such that, for every i € {1,...,n}, there exists a set of helper sets
which uniformly covers {1,...,n}.

» This will provide a way to recover c; by accessing uniformly at random other coordinates of c.
» Querying these "random coordinates” will leak no information about i to the servers.

Let’s do this with combinatorics.

13/31
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Transversal designs

A transversal design TD(#,s) = (X, B, G) is given by:
> X a set of points, | X| = N = ns, o o e o
o o o o
o o o o
o o o o
e o o o
[ L] [ ] [
o o o o
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Transversal designs

A transversal design TD(#,s) = (X, B, G) is given by: G G Gu1 Gu
» X asetof points, | X| = N = ns, . J U ]
> apartition of X into subsets G = {G;}1<j<, called groups: o |l o o |l o

n
XZHG/ and ‘G]‘:S, i ¢ ® ®
]:1 [ ) [ ] [ ] [ )
[ ) [ ] [ ] [ )
[ ] [ ] L] °
[ ) [ [ ] [ )
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Transversal designs

A transversal design TD(#,s) = (X, B, G) is given by: G G Gn-1 Gn
» X asetof points, | X| = N = ns, . J U ]
> apartition of X into subsets G = {G;}1<j<, called groups: o |l o o |l o

n .
XZHG/ and ‘G]‘:S, b .l\\ b d
j=1 / .
[ ] L] S o [ ] [ ]
» a set of subsets of X, “incident” to G, called blocks B € B: / Sl

- BCXand |B|=n '/ hd d b

— forall {i,j} C X, the pair {i,j} lie \
either in a single group G € G, b j i b4 \\‘

or in a unique block B € B

[ ] L] [ ] [ ]
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Example: a TD(3,3)

An example for a TD(3,3) :

— ns = 9 points
- s = 3 groups G1, Gy, G3 of size 3
— ns = 9 blocks of n = 3 points, partitionned into 3 parallel classes B1, B, B3

Gq Gy Gs B = By U B, U B3

.
>
~7
e

nario Gasiull
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Codes from designs

Let 7 be a transversal design TD(n,s) = (X, B, G) with points X = {x1, ..., x4}, blocks
B={Bj,...,Bus} and groups G = {Gy,...,Gy}.

Its incidence matrix M, of size | B| x |X| = ns x ns, is defined by:

Ml',]' _ { 1 le]‘ € B;

0 otherwise.
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Codes from designs

Let 7 be a transversal design TD(n,s) = (X, B, G) with points X = {x1, ..., x4}, blocks
B={Bj,...,Bus} and groups G = {Gy,...,Gy}.

Its incidence matrix M, of size | B| x |X| = ns x ns, is defined by:

1 ifx; € B;
J— ] 1
Mi; { 0 otherwise.

Definition. The linear code C based on 7T over [ is the [F;-linear code having M as a parity-check
matrix (i.e. C* is generated by M).

- length(C) = |X| = ns,
- dim(C) = dim(ker M),
— every block B € B gives a parity-check equation h € C*, such that

supp(h) =B and wt(hg) =1, Vi=1,...,n

16/31



The transversal design TD(3, 3) represented by:
word ¢ € IF? B= DB

q
C1||C21|C3
C4||C5|Co
C71|¢8||C9

gives a code with the following parity-check matrix:

1
0
0
1
H=| 0
0
1
0
0

1 0

(=N lelel ool

RO OoORrRrOOoOO O
RO OO R OO

CORrRrPRPrOOORrO
OFR OO0 OO
OROFrROOrRrOO
RO OO R R OO
OCOROROROO
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gives a code with the following parity-check matrix:

1
0
0
1
H=| 0
0
1
0
0

0

OCrRrOORrOOoOOoOH
RO OO OO OoO
RO OO R OO

OO R PR OOOoORO
O OO O OO
ORrOFrRrOORFr OO
_R OO0 O OO
OO OROROO
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The transversal design TD(3, 3) represented by:
word ¢ € IF? B= DB

q
C1||C21|C3
C4||C5|Co
C71|¢8||C9

gives a code with the following parity-check matrix:

1
0
0
1
H=| 0
0
1
0
0

1 0

OCrRr OO RO OO
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The transversal design TD(3, 3) represented by:

word ¢ € IF9

gives a code with the following parity-check matrix:
1

U

Dimension of the code?

T

Il
OO OORO O
(=N NeNel ele N
e lel leRelleNel
OCOR R OO0 RO
O OO O OO
OO OO OOo
—_ OO0 ORREOO
OCORORORFEOO

» depends on the characteristic,

b

» for instance, over IF3, we haverk(H) =6 —=— dim(C) =
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Outline

2. PIR schemes with low computation and storage

A PIR scheme with transversal designs
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The PIR scheme

[% Private Information Retrieval from Transversal Designs. L.. IEEE-TIT. 2019.

LetC C IF;‘] be a code based on a TD(n, s), with N = ns.
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The PIR scheme

[% Private Information Retrieval from Transversal Designs. L.. IEEE-TIT. 2019.

LetC C IFQI be a code based on a TD(n, s), with N = ns.

o Initialisation. Encode files (Fy, ..., Fx) — ¢ € C, and upload €|G, on server Sj.

e To recover ,withi € X:

1. User randomly picks a block B € B containing .
Then, user defines queries: G Gy Gj

c c c
unique pointin BNG;  ifi ¢ G; ! 4 7

a random point in G]- otherwise. A
2 C5 cg
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The PIR scheme

[% Private Information Retrieval from Transversal Designs. L.. IEEE-TIT. 2019.

LetC C IFQI be a code based on a TD(n, s), with N = ns.

o Initialisation. Encode files (Fy, ..., Fx) — ¢ € C, and upload €|G, on server Sj.

e To recover ,withi € X:

1. User randomly picks a block B € B containing .
Then, user defines queries: G Gy Gj

c c c
unique pointin BNG;  ifi ¢ G; !

a random point in G]- otherwise. A
2 C5 cg

%:Q()ji:{

2. Each server S; sends back c,,
] qj c C
3. User recovers 3 6 9

==Y == ) o

j: 1€G; beB\{i}

18/31
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Privacy and parameters

Theorem. This PIR protocol is information-theoretically private.

Proof:
— the only server which holds F; received a random query;

— for each other server Sj, query g; gives no information on the block B which has been picked = no information
leaks on i.
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‘ Theorem. This PIR protocol is information-theoretically private. ‘

Proof:
— the only server which holds F; received a random query;

— for each other server Sj, query g; gives no information on the block B which has been picked = no information
leaks on i.

Features.
» communication complexity: nlogs uploaded bits, 1 log g downloaded bits

» computational complexity:

> only 1 read for each server (optimal)
» < nadditions over FF, for the user

> storage overhead: (ns — k) log g bits, where k = dim(C)

Question: transversal designs leading to large dimension codes?
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Instances with geometric designs

An example: the classical affine transversal design:
> X:]Fq’”formEZ,
> G a partition of X into g hyperplanes Gy, ..., Gg,
> B = {affine lines L secant to each G;}.

The code has:
- length ns = g™,

— “locality” n = q.
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An example: the classical affine transversal design:
> X:]Fq’”formEZ,
> G a partition of X into g hyperplanes Gy, ..., Gg,
> B = {affine lines L secant to each G;}.

The code has: o
- length ns = g™, 0z} mes
— “locality” n = q. o1f n-s

Information rate of affine geometry TD-based code
depending on the length.

Each curve corresponds to a value of m € {2,3,4,5}.

Question: how to deal with collusions and errors?
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Outline

2. PIR schemes with low computation and storage

Collusion-resistant PIR schemes with weighted lifted codes

20/31



An algebraic construction

We have seen a combinatorial construction of codes for PIR, using transversal designs.

Let’s now see what we can do algebraically.
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Reed-Solomon and Reed—Muller codes

Definition. The (full-length) Reed-Solomon code of dimension k over F, is:

RS, (K) = {evar(f) = (F(x1), .. f(x;)) | deg(f) <k —1}.
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coordinates of c.
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Definition. The Reed-Muller code of order m and degree r over [y is:

RM, (m, 1) := {evan(f) | f € Fy[X] and deg(f) <r}.
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Definition. The Reed-Muller code of order m and degree r over [y is:

RM, (m, 1) := {evan(f) | f € Fy[X] and deg(f) <r}.

Reed-Muller codes have the following property:

Ve =evpan(f) € RMy(m,r) and V affineline L C A™,
evai(fir) € RSy(r+1).

(where f|; is the lowest-degree univariate polynomial interpolating f over L)
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Reed-Solomon and Reed—Muller codes

Definition. The (full-length) Reed-Solomon code of dimension k over F, is:
RSy (k) == {evai(f) = (f(x1),....f(xq)) | deg(f) <k—1}.

The code C = RS (k) is MDS: every codeword ¢ € C can be reconstructed from any k-subset of
coordinates of c.

Definition. The Reed-Muller code of order m and degree r over [y is:

RM, (m, 1) := {evan(f) | f € Fy[X] and deg(f) <r}.

Reed-Muller codes have the following property:

Ve =evpan(f) € RMy(m,r) and V affineline L C A™,
evai(fir) € RSy(r+1).

(where f|; is the lowest-degree univariate polynomial interpolating f over L)

In particular, if r < g — 2, then ¢; = f(P;) can be reconstructed by interpolating a polynomial of
degree r on g — 1 other points of any line passing through P;.
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A PIR scheme based on Reed—Muller codes

Yy St S2 S5 Sy S5 S¢ S7 Ss

Database F is encoded with
RM;,(m, 1), then distributed across
the servers
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/./ RM;,(m, 1), then distributed across

the servers
s Assume one wants to extract file F;.
/./ Pick a line L through i, query all files
Fj except I';, and interpolate the cor-

/./ responding univariate polynomial.
,./ L is an affine line

//./ — no individual server can find
[ | where is

X = the PIR scheme is private
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Parameter of the Reed—Muller code-based PIR

Features with RM, (m, 1) of length g™
> communication complexity: (m — 1)qlog g uploaded bits, 4log g downloaded bits

> computational complexity:

> only 1 read for each server (optimal)
> a decoding procedure for RS;(r) for the user

(r/q)" <1

m! m!

~

> storage overhead: the information rate of RM,(m, ) withr < g —11is
1

= We need codes with the same “recovery properties”, and with larger dimension.
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Lifted codes

“Lifted” codes are the largest codes having the same property as Reed—Muller codes.

% New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.
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Lifted codes

“Lifted” codes are the largest codes having the same property as Reed—Muller codes.

% New affine-invariant codes from lifting. Guo, Kopparty, Sudan. ITCS. 2013.

Definition. The m-th lifted Reed-Solomon code of degree r over IFy is:

Lifty(m,r) == {evan(f) | f € F4[X] and V affine line L C A™, deg(fi,) < r}.

Lifted codes contain Reed-Muller codes, sometimes properly.
Example. For g = 4, m = 2,7 = 2, consider f(X,Y) = X?Y? and an affine line L with equation
(aT +b,cT +d). Then,

f@@T+b,cT +d) = (a®d* + b*c®)T? + a>T + b*d> mod (T* —T)

corresponds to a degree—2 polynomial in T.

Hence,
ev(X?Y?) € Lifty(2,2) but ev(X?Y?) ¢ RMy(2,2).

nario Gasiull
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Lifted codes: application to PIR

Theorem (Guo, Kopparty, Sudan "13). For every fixed m, and for growing alphabet and length, lifted
codes reach arbitrarily large information rates.

Black squares: pairs (i, j) such that ev(X'Y/) € Lift,(m = 2,r = g —2).

Corollary. For a sufficiently large number of servers, we have PIR with storage overhead — 0.
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Weighted lifted codes

Question: how to deal with collusions and byzantine errors?
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Weighted lifted codes

‘ Question: how to deal with collusions and byzantine errors? ‘

For convenience, here m = 2.

Definition. A t-curve is:

L ={(x,g(x)) € A? | g € Fy[X], deg(g) <t}
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Weighted lifted codes

‘ Question: how to deal with collusions and byzantine errors? ‘

For convenience, here m = 2.

Definition. A t-curve is:

L ={(x,g(x)) € A? | g € Fy[X], deg(g) <t}

Definition. The weighted lifted Reed-Solomon code of degree r and weight t over I, is:

WLift, (t,7) = {evpa:(f) | f € Fy[X, Y] and V t-curve £ C Az,deg(fw) <r}

Consequence: for every codeword ¢ € WLift,(t,7) and every t-curve £, we have:

Cm € RSq(T"r 1) .

27/31 J. Lavauzelle



A PIR scheme based on weighted lifted codes

Si Sy S; Si Ss S¢ S; Ss

Database F in encoded with
WLift,(t,7), then distributed across
g servers
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A PIR scheme based on weighted lifted codes
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A PIR scheme based on weighted lifted codes

S1 Sy S3 Sy S5 S¢ Sy Sg
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Database F in encoded with
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where is

\\ L — the PIR scheme is t-private
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Parameters

3 Weighted Lifted Codes: Local Correctabilities and Application to Robust Private Information Retrieval. L., Nardi. IEEE
TIT. 2021.

Theorem. Let p be a prime number, > 1 and & > 2 be fixed integers. Then, the information rate
WoLiftye (£, p° — «) grows to 1 when e — oo.

Corollary: we get PIR schemes with relative storage overhead — 0, for a constant number of
adversaries.
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Parameters

3 Weighted Lifted Codes: Local Correctabilities and Application to Robust Private Information Retrieval. L., Nardi. IEEE
TIT. 2021.

Theorem. Let p be a prime number, > 1 and & > 2 be fixed integers. Then, the information rate
WoLiftye (£, p° — «) grows to 1 when e — oo.

Corollary: we get PIR schemes with relative storage overhead — 0, for a constant number of
adversaries.

Theorem. Let p be a prime number, t > 1 and ¢ > 1 be fixed integers. Let y = 1 —p~¢ and
Ce = WLiftpe (t,vp°). Then, the information rate R, of C, satisfies:

lim R, = Kype > 0
e—o0

Corollary: we get PIR schemes with constant relative storage overhead, for a constant number of
collusions and a constant fraction of errors.
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Other constructions

Other works. PIR has been a hot topic during for few years.
» Notion of PIR capacity: achievable bounds on the download rate of PIR schemes.
— requires lot of comuttation of the server side
> Optimal constructions over given distributed storage systems:

— data is already encoded by the storage system
— we can avoid re-encoding and still do PIR

% [SJ17] The Capacity of Private Information Retrieval. Sun, Jafar. IEEE-TIT. 2017.
% [TGR18] PIR from MDS Coded Data in Distributed Storage Systems. Tajeddine, Gnilke, El Rouayheb. IEEE-TIT.

2018.
% [TGKFH18] Robust PIR from Coded Systems with Byzantine and Colluding Servers. Tajeddine, Gnilke, Karpuk,

Freij-Hollanti, Hollanti. ISIT. 2018.
% Private Information Retrieval Schemes With Product-Matrix MBR Codes. L., Tajeddine, Freij-Hollanti, Hollanti. IEEE

IFS. 2021.
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Conclusion

Open questions / future works.
1. Combinatorial bounds on the parameters.
2. Updatable files?
3. Extension to peer-to-peer storage systems (codes on random graphs).
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Conclusion

Open questions / future works.
1. Combinatorial bounds on the parameters.
2. Updatable files?
3. Extension to peer-to-peer storage systems (codes on random graphs).

Thank you for your attention!
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