Algebraic methods in an alleged

proof of the Jacobian Conjecture
arXiv: 2306.03996

Tadeusz Krasinski

(joint thoughts with dr Szymon Brzostowski)
University of Lodz, POLAND
Seminario GASIULL
January 30, 2024, Google Meet



Introduction

The article:

Wolfgang Bartenwerfer, The Cremona problem in dimension 2.
Archiv der Mathematik (Basel) 119(2022), 53 -62.



-4y

MR1099945 - Die Beschranktheit der Stlickzahl der Fasern K-analytischer Abbildungen
The boundedness of the number of fibers of K-analytic mappings

Bartenwerfer, Wolfgang

J. Reine Angew. Math. 416 (1991), 49-70.

MRO0869753 - Fortsetzung koharenter Garben an krummlinigen Hartogsfiguren und solchen mit
beliebiger Basis
Extension of coherent sheaves on curvilinear Hartogs figures and on those with arbitrary base
Bartenwerfer, Wolfgang
Nederl. Akad. Wetensch. Indag. Math. 48 (1986), no. 4, 361-377.

MRO0782387 - Zur Existenz einer Steinschen Umgebung eines abgeschlossenen Steinschen
Unterraums
On the existence of a Stein neighborhood of a closed Stein subspace

Bartenwerfer, Wolfgang

Compositio Math. 54 (1985), no. 1, 79-93.

MRO0653459 - Die strengen metrischen Kohomologiegruppen des Einheitspolyzylinders
verschwinden
The strict metric cohomology groups of the unit polycylinder vanish

Bartenwerfer, Wolfgang

Nederl. Akad. Wetensch. Indag. Math. 44 (1982), no. 1, 101-106.

MRO0622355 - k-holomorphe Vektorraumbiindel auf offenen Polyzylindern
k-holomorphic vector space bundles on open polycylinders

Bartenwerfer, Wolfgang

| Raina Anaaw, Math. 326 (1981), 214-220.

. T I T e Bl

8 citations
MSC 32P05
B Article

1 citations
MSC 32D25

MSC 32K10
B Article

3 citations
MSC 12)25

3 citations
MSC 32L05
B Article



Introduction
Review in Zentralblatt:

Bartenwerfer, Wolfgang
The Cremona problem in dimension 2. (English) [Zbl 15[11.14[]{]1[
Arch. Math. 119, No. 1, 53-62 (2022); correction ibid. 120, No. 6, 665-666 (2023).

The famous Jacobian Conjecture claims that a polynomial mapping F' : C" — C" with the constant non-
zero jacobian (det JacF = const # 0) is a polynomial automorphism. The author proves this conjecture
for n = 2. We put F = (f, g). However, there are some weak points in the proof:

1. (communicated to me by Z. Jelonek and A. Parusinski). In Corollary 1.5 from the proportions

n— TL‘ = "::j the author infers that |my — ms| # |ny — na|. The second possible case |my — ms| =

|n1 — ng| = 0 is omitted, which should be considered separately.

2. (communicated to me by Sz. Brzostowski). In Proposition 2.3 the cardinality of the fibers of ([, g)|v
is calculated. It is equal to the sum of cardinalities of the fibers of the mappings: (f,¢"%)|v,
(£reg"®)v, ..., (f, ¥ 1g"/®)|y, where € is a k-th primitive root of 1 and g'/* is a fixed k-th
root of g (under assumptions in the proof this root exists). Precisely, if (zo,70) € V and we put

(Uﬂ,ﬁ) = {f{xl]:yﬂ)?g(mﬂ:yﬂ))? 15' = !}”k(iﬂu, ?Ju) then

#((£,9)lv) " (e, B) = Z#((f,w'”)lv) (o, B).

The author claims that each term in the sum is the same and equal to |ny — ns|/k. This is not
justified because we don’t know if the point (e, 3 ) is in the images (f,e'g"/*)(V) fori=1,...,k—1
(this is true for i = 0).

Editorial remark: See also the correction [R. Chill and G. Nebe, Arch. Math. 120, No. 6, 665 666 (2023;
Zbl 1512.14035)|.

Reviewer: Tadeusz Krasinski (Lodz)



Introduction
Review in Mathematical Reviews:

Bartenwerfer, Wolfgang
The Cremona problem in dimension 2. (English summary)
Arch. Math. (Basel) 119 (2022), no. 1, 53-62.

See correction in: MR4598549

Classifications

14R15 - Jacobian problem
14G22 - Rigid analytic geometry

Citations

From References: 1
From Reviews: 0

This paper contains an attempt to solve the Jacobian Conjecture in the two-dimensional case. Unfortunately, the claim of Proposition 2.3, the key

proposition of the paper, is wrong. The author discovered a mistake in the proof of this proposition and will be withdrawing the paper.

Reviewer: Makar-Limanov, L. G.



Introduction

Correction to: Arch. Math. (2022) 119:53-62
https://doi.org/10.1007/s00013-022-01733-1

The proof of the main result of the original article [1] is wrong.

The original article claims to prove the Jacobian conjecture in dimension
2. After publication, the author and later the editors learned from Makar-
Limanov that the method of proof cannot work as claimed. In an email to
Makar-Limanov from October 31st 2022, the author admitted:

“You are right that Proposition 2.3 must be wrong. It took me a certain
time to find out, where the fault is located. It 1s hidden at the very end of the
proof of Proposition 2.3:

A fibre of (f — G',yuk]]“,r gives Tise Lo a fibre of ([, g”k)w with the same
cardinality, but the thing does not work “vice versa”. So my argument s not
valid. Consequently there will come oul an “erralum”, which comes up to a
withdrawal of the whole paper.

Sincerely Yours, Wolfgang Dartenwerfer”

As we did not receive the promised erratum by the deadline December 31st

2022, the editors in chief of the Archiv der Mathematik decided to publish this

note as an erratum.
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global polynomial automorphism of CZ.
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Jacobian Conjecture (Keller Conjecture, Cremona
Problem)

Jacobian Conjecture (JC). If (f,g):C* - C% is a polynomial
mapping with jacobian equals identically 1, then (f,g) is a
global polynomial automorphism of CZ.

Remark 1. JC may be generalized to n—dimensional case and
over reals R. For n = 1 JC is true. W. Bartenwerfer ,,proved” JC

in 2-dimensional complex case.

Remark 2. JC is false for entire functions and in characteristic p.
Remark 3. JC is false over reals R under the weaker assumption

that the jacobian nowhere vanish.
Remark 4. There are a lot of equivalent formulations of JC.
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Jacobian Conjecture

Remark 5. By assumption on the jacobian the mapping (f, g)
is locally invertible. The problem is to prove the global
invertibility.

Remark 6. It suffices to prove only injectivity of (f, g).
Remark 7. Information on JC:

o A. Essen, Polynomial Automorphisms. Birkhauser 2000.
o A. Essen, S. Kuroda, A. Crachiola, Polynomial

Automorphisms and the Jacobian Conjecture. Birkhauser
2021.



,Proof” of Bartenwerfer.

Jacobian Conjecture.
Assumptions. (f, g):C? - C%, f,g € C[X,Y], Jac(f,g) = 1.
Thesis. (f, g) is a global polynomial automorphism of CZ2.



,Proof” of Bartenwerfer.

Jacobian Conjecture.
Assumptions. (f, g):C? - C%, f,g € C[X,Y], Jac(f,g) = 1.
Thesis. (f, g) is a global polynomial automorphism of CZ2.

Proof (reductio ad absurdum). Assume there exists a jacobian
pair (f, g) which is not an automorphism. Since (f, g) is not an
automorphism, by some Abhyankar theorems and jacobian
condition (Jac(f,g) = 1) it follows that we may assume f and
g have particular forms:



,Proof” of Bartenwerfer.
fXY)=fmXY)++f 1(X7Y), m=degf >0
gX,Y) =gn(X,Y)+ -+ g (XY), n=degg>0
fm (X, Y)=X"T1y M2, m; >0,m, >0 m;+ m, =m

gn(X' Y) — anynzi nl > O,nz > O; n1+ le — N,
and

= —=—=:7 € Q.



,Proof” of Bartenwerfer.

Additionally, we may assume m # n. In fact, if m = n, then by the

above proportions
m my m,

n ny n,
we get my = ny i m, = n, and then we replace the pair (f, g) by
new jacobian pair (f — g, g) , which fullfils this condition:

deg(f — g) < degg.



,Proof” of Bartenwerfer.

The idea is to reduce the degree of f with the help of g using the
proportion because , formally”

deg(f —g") <degf.
Then we would replace the pair (f,g) by new one (f — g', g) with
the less degree of the first component.

The trouble is: if r € N, then there may not exist the power g" in the
ring C|X,Y].



,Proof” of Bartenwerfer.

The idea is to reduce the degree of f with the help of g using the
proportion because , formally”

deg(f —g") <degf.
Then we would replace the pair (f,g) by new one (f — g', g) with
the less degree of the first component.
The trouble is: if r € N, then there may not exist the power g" in the
ring C|X,Y].
To overcome this problem we extend the ring C|X, Y] to another one
in which this is possible

C[x,Y] c cLXY
(CL{.((;Y:{formaI Laurent series at oo in 2 variables).
Two illustrative examples:



,Proof” of Bartenwerfer.

Example 1. Let g(X,Y) = X“Y*+ X3Y + Y + 6. Then formAaIIy

1 X 1 6 2
_(v2v4 | |

_ X 1 6
=XV |1+ +
\ ys X4ys  X2y+#
= XY4(1+ )
We used the known formal Taylor formulav1l+u=1—Y%u+ - It
is well-defined because degrees of the terms in % + 21 5 26 —are
v3 ' x2y3 = x?y

strictly negative. Then (1 + ---) is a well-defined formal series which
terms are Laurent monomials in 2 variables. It is impossible in next



,Proof” of Bartenwerfer.

Example 2. Let g(X,Y) = X?Y* + XY +Y + 6. Using the same
method as above

1 2v4a X3 1 I 6 15
gZ(X,Y)z(X Y 1+W+X2Y3 'X2Y4 )
= X1v?2 |14 X | 1 | 6

\ Y3  X2Y3  X2y+4

= X1Y?(???Not well-defined)
In formal expansion of the root we have infinite number of terms of
degree 0.



,Proof” of Bartenwerfer.

CLY ={¥F _fi, fieC[X,Y, X", Y] degf; =ik € Z}
- the ring of Laurent series at oo in 2 variables.



,Proof” of Bartenwerfer.

CLY =% _fi, fieC[X,Y, X1, Y1), degf, =i,k € 7}
- the ring of Laurent series at oo in 2 variables.
One can also equivalently define
cLyY —(C[XYX Y-1]
- the completion of the ring C[X,Y, X1, Y 1] = C[X, Y]xy with
respect to the filtration
L, ={feC|X,Y]yy:degf < —n}, n€Z
L, DL, 1,nEL.
Or in other terms

CLYY :=1lim C[X,Y]xy/Ln,



,Proof” of Bartenwerfer.

Examples.
| X | XZ X3
Ity tyatyst
| X | X2 X3
Ittty



,Proof” of Bartenwerfer.

Properties of the ring (CLfgyz
1. (CL{.(C;Y is @ noetherian ring without zero divisors,

2.CLYY ¢ C(X,Y), (1+1/X & C(X,Y)),
3.C(X,Y) & CLYY, (=& CLY),
4. an element f € CL%" is invertible if and only if
f(X,)Y) =aX™Y" + || (1)
Il - denotes ,terms of lower degree”,

5. aninvertible element f € (CLf(;Y of form (1) has a root of
dgree k € Z~ if and only if k| ny and k| n,,

6. (CLng is not a local ring.




,Proof” of Bartenwerfer.

In the extension CLYY o C[X, Y] we modify the pair (f, g) to

another one (f — G(gl/k),g) with the least possible degree

(equalto 2 — n) of f — G(gl/k), where G is a Laurent polyno-
1

mial in one variable and gk, k := GCD(n4, n,), is a fixed k-th

1
root of g (the remaining are egk(X,Y), € = 1).



,Proof” of Bartenwerfer.

In the extension CLYY o C[X, Y] we modify the pair (f, g) to

another one (f — G(gl/k),g) with the least possible degree

(equalto 2 — n) of f — G(gl/k), where G is a Laurent polyno-
1

mial in one variable and gk, k := GCD(n4, n,), is a fixed k-th

root of g (the remaining are sg%(X, Y), ek = 1).
Properties of the modified pair:

1. (f — G(gl/k),g) is still a jacobian pair (in CLL"),
2. deg (f — G(gl/k)) =2—-n,

3.f —G(gV*)(X,Y) = axl Myl "2 4+ || .



,Proof” of Bartenwerfer.

After these modifications the initial pair (f, g) is reduced to
another one

f—G(gV*)(X,Y) = ax1 ™Myl "2 ||
gX,Y) =Xmy"2 4+ ||
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After these modifications the initial pair (f, g) is reduced to
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f—G(gV*)(X,Y) = ax1 ™Myl "2 ||
gX,Y) = Xmymz + ||

Changing roles of f and g in the above reasoning we get yet
another pair

f(X,Y) =Xm™ym™m 4 ||
g—F(fY*)(X,Y) = pxt-myl-mz 4 ||



,Proof” of Bartenwerfer.

After these modifications the initial pair (f, g) is reduced to
another one

f—G(gV*)(X,Y) = ax1 ™Myl "2 ||
gX,Y) = Xmymz + ||

Changing roles of f and g in the above reasoning we get yet
another pair

f(X,Y) =Xm™ym™m 4 ||
g—F(fY*)(X,Y) = pxt-myl-mz 4 ||

Moreover from m # n and the jacobian condition it follows
jmqy —my| # [ng —nyl.



,Proof” of Bartenwerfer.

Everything up to this point is true. How does the author get a
contradiction using the above reductions? Assuming that all the
above formal series converge on ,some set V”, he calculates the
cardinality of fibers of the mapping (f,g) on this V in two ways:
l. Using the first reduction he calculates that this cardinality is

equal to |n; — n,| .
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Il. Using the second reduction he calculates that this cardinality
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,Proof” of Bartenwerfer.

Everything up to this point is true. How does the author get a
contradiction using the above reductions? Assuming that all the
above formal series converge on ,some set V”, he calculates the
cardinality of fibers of the mapping (f,g) on this V in two ways:
l. Using the first reduction he calculates that this cardinality is
equal to |n; — n,| .
Il. Using the second reduction he calculates that this cardinality
is equal to [m; — m,|.
Hence he get lmy —m,| = |ny — n,|.
But we noticed above

Imy —my| # |ng —ny|.
Contradiction. 2 Z £



The fault in a ,,proof” of Bartenwerfer.

The error is in the calculation of the cardinality of
fibers (f,g) on V — there is an incorrect manipulation
of the roots of functions of f and g when we pass
from formal series to functions.



The fault in a ,,proof” of Bartenwerfer.

The error is in the calculation of the cardinality of
fibers (f,g) on V — there is an incorrect manipulation
of the roots of functions of f and g when we pass
from formal series to functions.

Steps of the author’'s wrong calculations of the
cardinality of fibers of (f,g):



1. Extension of the domain of the mapping (f, g).

To define appropriate set I/ the author extends the field C to
another one K which satifies the conditions:

1.C c K,

2. K contains Laurent series in one variables at o-.

3. K is algebraically closed.

4. K is complete with respect to some metric (hon-archimedean).

This is a new point where rigid geometry is applied.



1. Extension of the domain of the mapping (f, g).

The above conditions fulfills the following construction
C c C[[t™1] = C((t™Y) = C((t™) c C((t7 1) =K
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1. C[[t~1]] - the ring of formal series in t~1. The order is
replaced by the degree deg() of a series .
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1. Extension of the domain of the mapping (f, g).

The above conditions fulfills the following construction
C c C[[t™1]] € C((t™) € T(E) € C((t 1) =: K
1. C[[t~1]] - the ring of formal series in t~1. The order is
replaced by the degree deg() of a series .
C((t™1)) —the quotient field of C[[t~1]].
3. C((t™1)) - algebraic closure of the field C((t~1)). In fact it is

the field of formal Puiseux series at o (= series in one variable
with rational exponents with common denominator).

———_

4. C((t~1)) - the completion of the field C((t~1)) in the metric
d(o,):=edes(®-W)

A




1. Extension of the domain of the mapping (f, g).

Remarks:

1. Kis algebraically closed.

2. The metric d(@,J) in K is non-archimedean.
3. Kis complete.

4. In K we have non-archimedean absolute value
|| == ede8(®)

(notice |@,,| — 0 iff deg(¢p,,) = —).

Definition. An absolute value of a field K (non-archimedean):
|- |: K = Ry

1. la|l=0<=a=0,

2. |ab| = |a]|b|,

3. |a+ b| < max{|al, |b|}




2. Definition of an appropriate set V.

We define

V = {(X,y) eK%:1l<e< x| = ly| < p},
where g, p are chosen such that all the above considered series
are convergent in V. This set, in this non-archimedean absolute

value, is open in K?.



2. Definition of an appropriate set V.

We define

V = {(X,y) eK%:1l<e< x| = ly| < p},
where g, p are chosen such that all the above considered series
are convergent in V. This set, in this non-archimedean absolute

value, is open in K?.

Then we have the mapping

DV = (f, 9)V).

We count the cardinality of fibers of this mapping.



2. Counting the cardinality of fibers of (f, g)W

Let (xq, Vo) €V i
(f (x0, ¥0), 9(x0, ¥0)) =:(a, p).

From the form of f and g and properties of the absolute
value a, 8 # 0. We have to count #(f, g)ﬁ,1 (a,B), i.e. the

number of solutions in IV of the system
fX,)Y) =«
gX,Y)=p



2. Counting the cardinality of fibers of (£, g)W.

Now we want to use reductions from the first part of the proof.
We reduced the mapping (f, g) to

f—G(gV*)(X,Y) = ax1™™myl 2 + ||

g(X,Y) =X"My" + (|
and
f(X,)Y)=X"My™m2 4 ||

g—F(fY®)(X,Y) = bx1 ™yl m2 4 ||

The above reductions were formal and used formal k-th root of

the considered series (precisely fixed one roots g'/* and f1/%).
When we treat these series as functions in V we have to consider

the remaining roots.



2. Counting the cardinality of fibers of (f, g)W.

To use the above reductions (precisely the first reduction) in
solving in V the system

(f&X.Y) =a,
we should find all solutions in V of k systems
fX=a |fXY)=q fX,Y) =aq
1 _ 1 - 1 ~
gr(X,Y) =B, |egk(X,Y) =P, e"lgk(X,Y) = B,

1 ~
where € is a primitive k-th root of unity and gk(x,, vy) =:B.

Obviously 8% = 8.



2. Counting the cardinality of fibers of (f, g)W.

In turn each system
fX,Y) =aq,
.1 -
e'gk(X,Y) =B,

has the same number of solutions as the following one
(

fX,Y)-G (Eig%(X, Y)) =a—G(p),
.1 ~
\ elgk(X,Y) = B.




2. Counting the cardinality of fibers of (f, g)W.
The author shows that the first of these systems (for i = 0) i.e.

fX,Y)—-aG (g%(X, Y)) =a—G(B),
1 -
gk(X,Y) =p.

In,—n,|

has exactly solutions in V because, by the reduction, the

left hand sides have particular forms
fX,Y)— (gk(X Y)) = aX1 niyl-nz4 ||
gk(X Y) = XkYk+JL




2. Counting the cardinality of fibers of (f, g)W.

That is, the author shows that the systems fori = 0 i.e.
aXl"yl=" 4 || =a—G(B),
n; ny ~
XkYrk+1l = b.

Iny—n,|

has exactly solutions in V. The idea of the proof will be

given in @ moment.



2. Author’s error.
He solves only one system for i = 0. But we couldn’t say the
same on the remaining systems. In fact, for i = 0 the reduction
gives

1
fX,Y) -G (gE(X, Y)) = gX1 Myl 24 ||,

In the remaining cases nothing guarantees us that for all [ =
1

1,.., k1, f(X,Y)—G (sigE(X, Y)) has a similar leading form

1
fX,Y)—-aG (s‘gF(X, Y)) = pX1 Myl na4 ||
This property is crucial in the proof that the number of solutions
Ini—n;|
k

IS



2. Author’s error.

In fact, more detailed analysis leads to conclusion that there exists
i € {1,...,k — 1} such that the system

( 1 3
fX,Y)—-G (ELQE(X, Y)) =a—G(B),

3
.1 -
\ elgk(X,Y) = B.

has no solutions in V. Moreover, systems which have solutions in

In{—n-| .
L2 solutions.

V, have precisely



2. Author’s error.

Therefore, from this reasoning we cannot draw the conclu-
sion that k systems

fx=a (fxn=q FXLY) = a,
g )=f |legrx,v)=f ~  |elgrx,y) =3,
have
k- lnl;n2| = |ny; — ny|

solutions in V. In fact the above systems has less solutions in V
than |ny — n,|.

This is the main author’s fault.



2. Counting the cardinality of fibers of (f, g)W.
The idea of the proof that the system
f—-6(g"*)X,Y) = a— G(B)
gk X, Y)=p
that is
aXl Myl =My || =q— G(ﬁ),

n{ ny
XY+l = L.

In{—n-| . :
L 2 solutionsin V.

has exactly



2. Counting the cardinality of fibers of (f, g),.

First we reduce the equations to the homogeneous forms of the
highest degree i.e.

aX 1y — o~ G(f)
an/kynz/k — B’

This system has exactly |n; — n,|/k solutions in V.



2. Counting the cardinality of fibers of (f, g),.

First we reduce the equations to the homogeneous forms of the
highest degree i.e.
X1yl = q — G(f)
an/kynz/k — B’

This system has exactly |n; — n,|/k solutions in V.

Next we ,,extend” these solutions to true solutions of the initial
system by using a general variant of the Hensel lemma given by
Bourbaki.



2. Counting the cardinality of fibers of (f, g),.
Bourbaki. Commutative Algebra, Ch. lll, §4.5,Cor. 2.
Theorem. Let A be a commutative ring and m an ideal in A
satisfying conditions:
1. A is a topological ring with the topology given by ideals as
a base of neighbourhoods of the zero,
2. A is Hausdorff and complete.
4. mis closed.
5. Elements of mt are topologically nilpotent.
If f=(1,.., fn) € A{Xq, ..., X, }" and for some a € A" the
jacobian Jac(f)(a) is inversible in A and f(a) = 0(mod m),
then there exists the unique element x € A", such that x =
a(mod m) and f(x) = 0.



2. Counting the cardinality of fibers of (f, g),.

In terms of our reasoning:
A={xeK:|x| <1} —ring,

m={x € K:|x| <1} —ideal,

1\

B; ={xe K: [x <7> — base.

J




Conclusions.

l. The proof is false and couldn’t be repaired.
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Il. New elements:
1. Using the Laurent series in two variables at infinity.
2. Using rigid geometry to cope with generalized solutions of

the systems of polynomials (solutions at infinity).



Conclusions.

l. The proof is false and couldn’t be repaired.

Il. New elements:

1. Using the Laurent series in two variables at infinity.

2. Using rigid geometry to cope with generalized solutions of
the systems of polynomials (solutions at infinity).

lll. The Jacobian Conjecture is still open.
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