

Central European Journal of Mathematics

A bound for the Milnor number of plane curve singularities

Research Article

Arkadiusz Płoski1*

1 Department of Mathematics, Kielce University of Technology, Al. Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland

Received 6 June 2013; accepted 24 August 2013

- **Abstract:** Let f = 0 be a plane algebraic curve of degree d > 1 with an isolated singular point at $0 \in \mathbb{C}^2$. We show that the Milnor number $\mu_0(f)$ is less than or equal to $(d-1)^2 [d/2]$, unless f = 0 is a set of d concurrent lines passing through 0, and characterize the curves f = 0 for which $\mu_0(f) = (d-1)^2 [d/2]$.
- **MSC:** 14B05, 14N99
- Keywords: Milnor number Plane algebraic curve
 - © Versita Sp. z o.o.

Introduction

Let $f \in \mathbb{C}[x, y]$ be a polynomial of degree d > 1 such that the curve f = 0 has an isolated singularity at the origin $0 \in \mathbb{C}^2$. Let $0 = 0_{\mathbb{C}^2,0}$ be the ring of germs of holomorphic functions at $0 \in \mathbb{C}^2$. The Milnor number

$$\mu_0(f) = \dim_{\mathbb{C}} \mathcal{O}\left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right)$$

is less than or equal to $(d-1)^2$ by Bézout's theorem. The equality $\mu_0(f) = (d-1)^2$ holds if and only if f is a homogeneous polynomial. The aim of this note is to determine the maximum Milnor number $\mu_0(f)$ for non-homogeneous polynomials f (Theorem 1.1) and to characterize the polynomials for which this maximum is attained (Theorem 1.4). The general problem to describe singularities that can occur on plane curves of a given degree was studied by Greuel, Lossen and Shustin in [4] (see also [9, Section 7.5] for further references). A bound for the sum of the Milnor numbers of projective hypersurfaces with isolated singular points was given recently by June Huh in [7]. Note here that a result of this type follows from Plücker–Teissier's formula for the degree of the dual hypersurface (see [8, Appendix II.3, p. 137]). To compare the two bounds let us consider the case of plane curves. Let C be a plane reduced curve of degree d > 1. For any

^{*} E-mail: matap@tu.kielce.pl

 $p \in C$ we denote $\mu_p = \mu_p(C)$ the Milnor number and $m_p = \operatorname{ord}_p C$ the order of C at p. From Plücker-Teissier's formula (see [8, Appendix II.3, p. 137] or [9, Theorem 7.2.2, p. 161]) we get $\sum_p (\mu_p + m_p - 1) \leq d(d-1)$.

Let *o* be a point of *C*. Then June Huh's bound (see [7, Theorem 1]) is $\sum_{p} \mu_p + m_o - 1 \leq (d-1)^2$, unless *C* is a cone with the apex 0.

Let us recall usual notions and conventions. By the curve f = 0 we mean (see [2, Chapter 3]) the linear subspace $\mathbb{C} f$ of $\mathbb{C}[x, y]$. If the polynomial f has no multiple factors then we identify the curve f = 0 and the set $\{P \in \mathbb{C}^2 : f(P) = 0\}$. We denote by $\operatorname{ord}_0 f$ the order of the polynomial f at $0 \in \mathbb{C}^2$ and by $i_0(f, g) = \dim_{\mathbb{C}} \mathcal{O}_{(f,g)}$ the intersection multiplicity of the curves f = 0 and g = 0 at the origin. Then $i_0(f, g) \ge \operatorname{ord}_0 f \operatorname{ord}_0 g$ with equality if and only if the curves f = 0 and g = 0 are transverse at 0, i.e. do not have a common tangent at 0. The curve f = 0 has an isolated singular point at 0 if $\operatorname{ord}_0 f > 1$ and $\mu_0(f) < +\infty$. Note that f is a homogeneous polynomial of degree d > 0 if and only if $\operatorname{ord}_0 f = d$.

1. Results

For any $a \in \mathbb{R}$ we denote by [a] the integer part of a. The main result of this note is

Theorem 1.1.

Let f = 0 be a curve of degree d > 1 with an isolated singular point at $0 \in \mathbb{C}^2$. Suppose that $\operatorname{ord}_0 f < d$. Then

$$\mu_0(f) \leqslant (d-1)^2 - \left[\frac{d}{2}\right].$$

We prove Theorem 1.1 in Section 3. The bound in the theorem is exact.

Example 1.2.

Let d > 1 be an integer. Put

$$f(x,y) = \begin{cases} \prod_{k=1}^{d/2} (x + kx^2 + y^2) & \text{if } d \equiv 0 \pmod{2}, \\ \prod_{k=1}^{(d-1)/2} x \prod_{k=1}^{(d-1)/2} (x + kx^2 + y^2) & \text{if } d \not\equiv 0 \pmod{2}. \end{cases}$$

Then *f* is a polynomial of degree *d* and $\mu_0(f) = (d-1)^2 - [d/2]$.

Remark 1.3.

Gusein-Zade and Nekhoreshev using topological methods proved in [5, Proposition 1] that if $\operatorname{ord}_0 f = 2$ then $\mu_0(f) \leq (d-1)^2 - [d/2]([d/2]-1)$. Another bound for the Milnor number follows from the Abhyankar–Moh theory of approximate roots (see [3, Corollary 6.5]). Suppose that the curve f = 0 is unibranch at 0 (i.e. f is irreducible in the ring of formal power series $\mathbb{C}[[x, y]]$ and the unique tangent to f = 0 at 0 intersects the curve with multiplicity d. Then $\mu_0(f) \leq (d-1)^2 - (d/d_1 - 1)(d - \operatorname{ord}_0 f)$, where $d_1 = \operatorname{gcd}(\operatorname{ord}_0 f, d)$.

Theorem 1.4.

Let f be a polynomial of degree d > 2, $d \neq 4$. Then the following two conditions are equivalent:

- (i) The curve f = 0 passes through the origin and $\mu_0(f) = (d-1)^2 [d/2]$,
- (ii) The curve f = 0 has $d \lfloor d/2 \rfloor$ irreducible components. Each irreducible component of the curve passes through the origin. If $d \equiv 0 \pmod{2}$ then all components are of degree 2 and intersect pairwise at 0 with multiplicity 4. If $d \not\equiv 0 \pmod{2}$ then all but one component are of degree 2 and intersect pairwise at 0 with multiplicity 4, the remaining component is linear and is tangent to all components of degree 2.

The proof of Theorem 1.4 is given in Section 4.

Remark 1.5.

The implication (ii) \Rightarrow (i) holds for any d > 2. The assumption $d \neq 4$ is necessary for the implication (i) \Rightarrow (ii). Take $f(x, y) = x(y^3 - x^2)$ which is a simple singularity of type E_7 . Then f is of degree d = 4, $\mu_0(f) = (d-1)^2 - [d/2] = 7$ and condition (ii) fails.

2. Preparatory lemmas

Let us begin with the following well-known properties of the Milnor number.

Lemma 2.1.

(i) If $f = f_0 \tilde{f}$ in $\mathbb{C}[x, y]$ with $f_0(0) \neq 0$ then $\mu_0(f) = \mu_0(\tilde{f})$. (ii) If $f = f_1 \cdots f_m$ in $\mathbb{C}[x, y]$, $f_i(0) = 0$ for $i = 1, \ldots, m$, then

$$\mu_0(f) + m - 1 = \sum_{i=1}^m \mu_0(f_i) + 2 \sum_{1 \le i < j \le m} i_0(f_i, f_j).$$

For a proof where the topological arguments are used see [9, Theorem 6.5.1, p. 145]. For a proof based on the properties of intersection numbers see e.g. [1, Proposition 2.4, p. 13].

Lemma 2.2.

Let f be an irreducible polynomial of degree d > 1, f(0) = 0. Then $\mu_0(f) \leq (d-1)(d-2)$ with equality if and only if the curve f = 0 is rational, its projective closure C has exactly one singular point $0 \in \mathbb{C}^2$ and f = 0 is unibranch at 0.

Proof. Apply the formula for the genus g of C (see [9, Corollary 7.1.3]): $2g = (d-1)(d-2) - \sum_{P} (\mu_{P} + r_{P} - 1)$, where r_{P} is the number of branches of C passing through P.

Example 2.3.

The polynomial $f = x^{d-1} + y^d$ is irreducible and $\mu_0(f) = (d-1)(d-2)$.

Let f = 0 be a curve of degree d > 1 with an isolated singular point at $0 \in \mathbb{C}^2$. Let $f_i = 0$, i = 1, ..., m, be irreducible components of f = 0 passing through 0 and let $d_i = \deg f_i$ for i = 1, ..., m. Then $f = f_0 f_1 \cdots f_m$ in $\mathbb{C}[x, y]$, where $f_0(0) \neq 0$.

Lemma 2.4.

Let $\Lambda = \{(i, j) \in \mathbb{N}^2 : 1 \leq i < j \leq m, f_i = 0, f_j = 0 \text{ are transverse (i.e. their tangent cones intersect only at 0) and <math>d_i > 1 \text{ or } d_j > 1\}$. Then $\mu_0(f) \leq (d-1)^2 - d + m - 2 \cdot \#\Lambda$.

Proof. Let $\tilde{f} = f_1 \cdots f_m$. Observe that for $(i, j) \in \Lambda$ we have $i_0(f_i, f_j) = (\text{ord}_0 f_i)(\text{ord}_0 f_j) < d_i d_j$ since $d_i > 1$ or $d_j > 1$ (if f_i is irreducible of degree $d_i > 1$ then $\text{ord}_0 f_i < d_i$). By Lemma 2.2 we get $\mu_0(f_i) \leq (d_i - 1)(d_i - 2)$ for $i = 1, \ldots, m$. Now, Lemma 2.1 implies

$$\mu_0(f) + m - 1 = \mu_0(\tilde{f}) + m - 1 \leqslant \sum_{i=1}^m (d_i - 1)(d_i - 2) + 2\sum_{(i,j)\notin\Lambda} i_0(f_i, f_j) + 2\sum_{(i,j)\in\Lambda} i_0(f_i, f_j)$$

$$\leqslant \sum_{i=1}^m (d_i - 1)(d_i - 2) + 2\sum_{(i,j)\notin\Lambda} d_i d_j + 2\sum_{(i,j)\in\Lambda} (d_i d_j - 1) = (d - 1)^2 - d + 2m - 2 \cdot \#\Lambda - 1$$

Lemma 2.5.

We have that $\mu_0(f) \leq (d-1)^2 - d + m$. The equality $\mu_0(f) = (d-1)^2 - d + m$ holds if and only if $\mu_0(f_i) = (d_i - 1)(d_i - 2)$ and $i_0(f_i, f_j) = d_i d_j$ for $1 \leq i < j \leq m$.

Proof. The inequality $\mu_0(f) \leq (d-1)^2 - d + m$ follows from Lemma 2.4 (see also [6, Proposition 6.3]). By Lemma 2.1 we can rewrite the equality $\mu_0(f) = (d-1)^2 - d + m$ in the form

$$\sum_{i=1}^{m} \mu_0(f_i) + 2 \sum_{1 \leq i < j \leq m} i_0(f_i, f_j) = \sum_{i=1}^{m} (d_i - 1)(d_i - 2) + 2 \sum_{1 \leq i < j \leq m} d_i d_j.$$

We have that $\mu_0(f_i) \leq (d_i - 1)(d_i - 2)$ by Lemma 2.2 and $i_0(f_i, f_j) \leq d_i d_j$ by Bézout's theorem which together with the equality above imply the lemma.

Lemma 2.6.

Let d > 2. If $\mu_0(f) = (d-1)^2 - d + m$ then all irreducible components of the curve f = 0 pass through $0 \in \mathbb{C}^2$.

Proof. Let $\tilde{d} = \deg \tilde{f}$. Clearly $\tilde{d} \leq d$. We have $(d-1)^2 - d + m = \mu_0(f) = \mu_0(\tilde{f})$ and $\mu_0(\tilde{f}) \leq (\tilde{d}-1)^2 - \tilde{d} + m$ by Lemma 2.5. The inequalities d > 2, $\tilde{d} \leq d$ and $(d-1)^2 - d \leq (\tilde{d}-1)^2 - \tilde{d}$ imply $\tilde{d} = d$. Therefore $\deg f_0 = d - \tilde{d} = 0$ and f_0 is a constant.

Lemma 2.7.

 $\#\{i \in [1, m] : d_i > 1\} \leq d - m.$

Proof. Let $I = \{i \in [1, m] : d_i > 1\}$. Then $I = \{i \in [1, m] : \operatorname{ord}_0 f_i < d_i\}$ and $\#I \leq \sum_{i \in I} (d_i - \operatorname{ord}_0 f_i) = \sum_{i=1}^{m} (d_i - \operatorname{ord}_0 f_i) \leq d - \operatorname{ord}_0 f \leq d - m$.

A line l = 0 is tangent to the curve f = 0 (at $0 \in \mathbb{C}^2$) if $i_0(f, l) > \operatorname{ord}_0 f$. We denote by T(f) the set of all tangents at 0 to f = 0. We have $\#T(f) \leq \operatorname{ord}_0 f \leq \deg f - 1$ if f is not homogeneous. For two polynomials $f, g, T(fg) = T(f) \cup T(g)$. Therefore we get $\#T(fg) \leq \#T(f) + \#T(g) - 1$ if $T(f) \cap T(g) \neq \emptyset$.

Lemma 2.8.

Let f_i , i = 1, ..., k, be irreducible polynomials of degree $d_i > 1$ such that $f_i(0) = 0$ for i = 1, ..., k. Suppose that the curves $f_i = 0$, i = 1, ..., k, have a common tangent at 0. Then $\#T(f_1 \cdots f_k) \leq \sum_{i=1}^k (d_i - 1) - k + 1$.

Proof. If k = 1 it is clear. Suppose that k > 1 and that the lemma is true for the sequences of k - 1 polynomials. Let f_1, \ldots, f_k be a sequence of k irreducible polynomials of degree > 1 such that the curves $f_i = 0$, $i = 1, \ldots, k$, have a common tangent at 0. Then by the induction hypothesis $\#T(f_1 \cdots f_{k-1}) \leq \sum_{i=1}^{k-1} (d_i - 1) - (k-1) + 1$. On the other hand $\#T(f_k) \leq d_k - 1$ and we get $\#T(f_1 \cdots f_k) \leq \#T(f_1 \cdots f_{k-1}) + \#T(f_k) - 1 \leq \sum_{i=1}^{k} (d_i - 1) - (k-1)$, since $f_1 \cdots f_{k-1}$ and f_k have a common tangent.

3. Proof of Theorem 1.1

Let *f* be a polynomial of degree d > 1 such that f(0) = 0 and $\mu_0(f) < +\infty$. We assume that *f* is not homogeneous. Let *m* be the number of irreducible components of the curve f = 0 passing through $0 \in \mathbb{C}^2$.

Lemma 3.1.

If $m \leq d - [d/2]$ then $\mu_0(f) \leq (d-1)^2 - [d/2]$. The equality $\mu_0(f) = (d-1)^2 - [d/2]$ implies m = d - [d/2].

Proof. Suppose that $m \le d - \lfloor d/2 \rfloor$. By the first part of Lemma 2.5 we get $\mu_0(f) \le (d-1)^2 - d + m \le (d-1)^2 - \lfloor d/2 \rfloor$. If $\mu_0(f) = (d-1)^2 - \lfloor d/2 \rfloor$ then $(d-1)^2 - d + m = (d-1)^2 - \lfloor d/2 \rfloor$, so $m = d - \lfloor d/2 \rfloor$.

Lemma 3.2.

If $m \ge d - [d/2] + 1$ then $\mu_0(f) < (d-1)^2 - [d/2]$.

Proof. Write $f = f_0 f_1 \cdots f_m$, where $f_0(0) \neq 0$ and f_i are irreducible with $f_i(0) = 0$ for i = 1, ..., m. Since the sequence $d \mapsto d - \lfloor d/2 \rfloor$ is increasing it suffices to check the lemma for the polynomial $\tilde{f} = f_1 \cdots f_m$. In what follows we write f instead of \tilde{f} and put $d_i = \deg f_i$ for i = 1, ..., m. Since f is not homogeneous we have m < d. Let $k = \#\{i : d_i > 1\}$. From $d_1 + \cdots + d_m = d$ it follows that $k \ge 1$. Note also that $m - k = \#\{i : d_i = 1\} > 0$ since by Lemma 2.7 we have $k \le d - m$ and consequently $m - k \ge m - (d - m) = 2m - d \ge d - 2\lfloor d/2 \rfloor + 2 > 0$. We label f_1, \ldots, f_m so $d_1 \ge \ldots \ge d_m$. Therefore we get $d_1 \ge \ldots \ge d_k \ge 2$ and $d_{k+1} = \ldots = d_m = 1$. Let us consider two cases.

Case 1. The curves $f_1 = 0, ..., f_k = 0$ have a common tangent. By Lemma 2.8 we have $\# T(f_1 \cdots f_k) \leq \sum_{i=1}^k (d_i - 1) - k + 1 = d - m - k + 1$. Therefore we get $m - k - \# T(f_1 \cdots f_k) \geq m - k - (d - m - k + 1) = 2m - d - 1$. Note that $2m - d - 1 \geq 2(d - \lfloor d/2 \rfloor + 1) - d + 1 > 0$. Thus there are at least 2m - d - 1 > 0 linear forms in the sequence $f_{k+1}, ..., f_m$ that are transverse to the curve $f_1 \cdots f_k = 0$ and we get $\# \Lambda \geq k(2m - d - 1) \geq 2m - d - 1$. Consequently by Lemma 2.4 we obtain $\mu_0(f) \leq (d - 1)^2 - d + m - 2(2m - d - 1) = (d - 1)^2 + d - 3m + 2 \leq (d - 1)^2 + d - 3(d - \lfloor d/2 \rfloor + 1) + 2 = (d - 1)^2 - \lfloor d/2 \rfloor - 2(d - \lfloor d/2 \rfloor) - 1 < (d - 1)^2 - \lfloor d/2 \rfloor$.

Case 2. The curves $f_1 = 0, ..., f_k = 0$ have no common tangent. Then for every linear form f_j , $k + 1 \le j \le m$, there exists a polynomial f_i , $1 \le i \le k$, such that f_i , f_j are transverse. Therefore $\#\Lambda \ge m - k$ and by Lemma 2.4 we get $\mu_0(f) \le (d-1)^2 - d + m - 2(m-k) = (d-1)^2 - d - m + 2k$. Since by Lemma 2.7 we have $k \le d - m$ the above bound for $\mu_0(f)$ implies $\mu_0(f) \le (d-1)^2 + d - 3m \le (d-1)^2 + d - 3(d - \lfloor d/2 \rfloor + 1) = (d-1)^2 - \lfloor d/2 \rfloor - 2(d-2\lfloor d/2 \rfloor) - 3 < (d-1)^2 - \lfloor d/2 \rfloor$. \Box

Now from Lemmas 3.1 and 3.2 we get $\mu_0(f) \leq (d-1)^2 - [d/2]$ which proves Theorem 1.1.

4. Proof of Theorem 1.4

To show that a curve f = 0 of degree d > 4 with $\mu_0(f) = (d - 1)^2 - [d/2]$ does not have irreducible components of degree 3 we need

Lemma 4.1.

Let $f, g \in \mathbb{C}[x, y]$ be irreducible polynomials, deg f = 3, deg g = 2, f(0) = g(0) = 0. Suppose that the curve f = 0 has a singular point at 0 and # T(f) = 1. Then

$$i_0(f,g) < \deg f \deg g = 6.$$

Proof. If f = 0 and g = 0 have no common tangent then $i_0(f, g) = \text{ord}_0 f \text{ ord}_0 g = \text{ord}_0 f < 3$. Thus we may assume that $f = x^2 + f^+$, $g = x + g^+$, where f^+ , g^+ are homogeneous forms of degree 3 and 2, respectively. We get $i_0(f, g) = i_0(f - xg, g) = i_0(f^+ - xg^+, g) = 3 \cdot 1$ for $f^+ - xg^+ = 0$ and g = 0 have no common tangent.

Lemma 4.2.

Let f be a polynomial of degree d > 2 such that f(0) = 0. Suppose that $\mu_0(f) = (d-1)^2 - d + m$, where m is the number of irreducible components of the curve f = 0 passing through $0 \in \mathbb{C}^2$. Then $f = f_1 \cdots f_m$ in $\mathbb{C}[x, y]$ with irreducible f_i , $f_i(0) = 0$ for $i = 1, \ldots, m$. Let $d_i = \deg f_i$ for $i = 1, \ldots, m$. Then $\# T(f_i) = 1$ and $i_0(f_i, f_j) = d_i d_j$ for i < j. If m < d then f = 0 has at most one linear component and has no two components of degree 2 and 3.

Proof. By Lemmas 2.5 and 2.6 we get $f = f_1 \cdots f_m$ in $\mathbb{C}[x, y]$, f_i irreducible, $f_i(0) = 0$, $i_0(f_i, f_j) = d_i d_j$ and $\mu_0(f_i) = (d_i - 1)(d_i - 2)$. We have $\# T(f_i) = 1$ for the curve $f_i = 0$ has only one branch at 0 by Lemma 2.2.

Suppose that the curve f = 0 has two linear components $f_j = 0$ and $f_k = 0$, $j \neq k$. Then there is no component $f_i = 0$ of f = 0 of degree $d_i > 1$ (if $f_i = 0$ had degree $d_i > 1$ then we would get $i_0(f_i, f_j) = i_0(f_i, f_k) = d_i > 1$ which is impossible

for $\# T(f_i) = 1$). Therefore if f = 0 has two linear components then all components are linear and intersect pairwise with multiplicity 1. Thus m = d and f is a homogeneous form of degree d.

Therefore, if m < d then there exists at most one linear component. Since $i_0(f_i, f_j) = d_i d_j$ if i < j there are no two components of degree 2 and 3 by Lemma 4.1.

Now, we can pass to the proof of Theorem 1.4.

Proof of Theorem 1.4. (i) \Rightarrow (ii) Assume that $\mu_0(f) = (d-1)^2 - [d/2]$, where d > 1 and $d \neq 4$. Then f = 0 has m = d - [d/2] irreducible components passing through $0 \in \mathbb{C}^2$ by Lemmas 3.1 and 3.2. We have $\mu_0(f) = (d-1)^2 - [d/2] = (d-1)^2 - d + m$ with m = d - [d/2] < d and by Lemma 4.2 we can write $f = f_1 \cdots f_m$, $f_i \in \mathbb{C}[x, y]$ irreducible, $f_i(0) = 0$. We label f_1, \ldots, f_m so that $d_1 \ge \ldots \ge d_m \ge 1$.

Case 1: $d \equiv 0 \pmod{2}$. Then m = d/2 and $d_1 + \cdots + d_m = d$. This is possible if and only if $(d_1, \ldots, d_m) = (2, \ldots, 2)$ or $(d_1, \ldots, d_m) = (3, 2, \ldots, 2, 1)$, where 2 appears m - 2 = d/2 - 2 > 0 times since d > 4. If $(d_1, \ldots, d_m) = (2, \ldots, 2)$ then the theorem follows from Lemma 4.2. The case $(d_1, \ldots, d_m) = (3, 2, \ldots, 2, 1)$ cannot occur by Lemma 4.1.

Case 2. Case 2: $d \neq 0 \pmod{2}$. In this case we have m = (d + 1)/2. From $d_1 + \cdots + d_m = d$ it follows that $(d_1, \ldots, d_m) = (2, \ldots, 2, 1)$. We apply Lemma 4.2.

The implication (ii) \Rightarrow (i) follows immediately from Lemma 2.1 (ii).

References

- Cassou-Noguès P., Płoski A., Invariants of plane curve singularities and Newton diagrams, Uni. lagel. Acta Math., 2011, 49, 9–34
- [2] Fulton W., Algebraic Curves, Adv. Book Classics, Addison-Wesley, Redwood City, 1989
- [3] García Barroso E.R., Płoski A., An approach to plane algebroid branches, preprint available at http://arxiv.org/ abs/1208.0913
- [4] Greuel G.-M., Lossen C., Shustin E., Plane curves of minimal degree with prescribed singularities, Invent. Math., 1998, 133(3), 539–580
- [5] Gusein-Zade S.M., Nekhoroshev N.N., Singularities of type A_k on plane curves of a chosen degree, Funct. Anal. Appl., 2000, 34(3), 214–215
- [6] Gwoździewicz J., Płoski A., Formulae for the singularities at infinity of plane algebraic curves, Univ. lagel. Acta Math., 2001, 39, 109–133
- [7] Huh J., Milnor numbers of projective hypersurfaces with isolated singularities, preprint available at http://arxiv.org/ abs/1210.2690
- [8] Teissier B., Resolution Simultanée I, II, In: Séminaire sur les Singularités des Surfaces, Lecture Notes in Math., 777, Springer, Berlin, 1980, 71–146
- [9] Wall C.T.C., Singular Points of Plane Curves, London Math. Soc. Stud. Texts, 63, Cambridge University Press, Cambridge, 2004