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Abstract: Let f = 0 be a plane algebraic curve of degree d > 1 with an isolated singular point at 0 ∈ C2. We show that the
Milnor number µ0(f) is less than or equal to (d−1)2 − [d/2], unless f = 0 is a set of d concurrent lines passing
through 0, and characterize the curves f = 0 for which µ0(f) = (d−1)2 − [d/2].
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Introduction

Let f ∈ C[x, y] be a polynomial of degree d > 1 such that the curve f = 0 has an isolated singularity at the origin 0 ∈ C2.Let O = OC2,0 be the ring of germs of holomorphic functions at 0 ∈ C2. The Milnor number
µ0(f) = dimC

O�( ∂f
∂x ,

∂f
∂y
)

is less than or equal to (d− 1)2 by Bézout’s theorem. The equality µ0(f) = (d− 1)2 holds if and only if f is a homogeneouspolynomial. The aim of this note is to determine the maximum Milnor number µ0(f) for non-homogeneous polynomials f(Theorem 1.1) and to characterize the polynomials for which this maximum is attained (Theorem 1.4). The generalproblem to describe singularities that can occur on plane curves of a given degree was studied by Greuel, Lossen andShustin in [4] (see also [9, Section 7.5] for further references). A bound for the sum of the Milnor numbers of projectivehypersurfaces with isolated singular points was given recently by June Huh in [7]. Note here that a result of this typefollows from Plücker–Teissier’s formula for the degree of the dual hypersurface (see [8, Appendix II.3, p. 137]). To comparethe two bounds let us consider the case of plane curves. Let C be a plane reduced curve of degree d > 1. For any
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p ∈ C we denote µp = µp(C ) the Milnor number and mp = ordpC the order of C at p. From Plücker-Teissier’s formula(see [8, Appendix II.3, p. 137] or [9, Theorem 7.2.2, p. 161]) we get ∑p(µp+mp− 1) 6 d(d−1).Let o be a point of C . Then June Huh’s bound (see [7, Theorem 1]) is ∑p µp +mo− 1 6 (d−1)2, unless C is a cone withthe apex 0.Let us recall usual notions and conventions. By the curve f = 0 we mean (see [2, Chapter 3]) the linear subspace C fof C[x, y]. If the polynomial f has no multiple factors then we identify the curve f = 0 and the set {P ∈ C2 : f(P) = 0}.We denote by ord0f the order of the polynomial f at 0 ∈ C2 and by i0(f, g) = dimC
O�(f,g) the intersection multiplicity ofthe curves f = 0 and g = 0 at the origin. Then i0(f, g) > ord0f ord0g with equality if and only if the curves f = 0 and

g = 0 are transverse at 0, i.e. do not have a common tangent at 0. The curve f = 0 has an isolated singular point at 0if ord0f > 1 and µ0(f) < +∞. Note that f is a homogeneous polynomial of degree d > 0 if and only if ord0f = d.
1. Results

For any a ∈ R we denote by [a] the integer part of a. The main result of this note is
Theorem 1.1.
Let f = 0 be a curve of degree d > 1 with an isolated singular point at 0 ∈ C2. Suppose that ord0f < d. Then

µ0(f) 6 (d−1)2 − [d2
]
.

We prove Theorem 1.1 in Section 3. The bound in the theorem is exact.
Example 1.2.Let d > 1 be an integer. Put

f(x, y) =


d/2∏
k=1
(
x + kx2 + y2) if d ≡ 0 (mod 2),

x
(d−1)/2∏
k=1
(
x + kx2 + y2) if d 6≡ 0 (mod 2).

Then f is a polynomial of degree d and µ0(f) = (d− 1)2 − [d/2].
Remark 1.3.Gusein-Zade and Nekhoreshev using topological methods proved in [5, Proposition 1] that if ord0f = 2 then µ0(f) 6(d− 1)2 − [d/2]([d/2]− 1). Another bound for the Milnor number follows from the Abhyankar–Moh theory of approximateroots (see [3, Corollary 6.5]). Suppose that the curve f = 0 is unibranch at 0 (i.e. f is irreducible in the ring offormal power series C[[x, y]]) and the unique tangent to f = 0 at 0 intersects the curve with multiplicity d. Then
µ0(f) 6 (d−1)2 − (d/d1 − 1)(d − ord0f), where d1 = gcd(ord0f, d).
Theorem 1.4.
Let f be a polynomial of degree d > 2, d 6= 4. Then the following two conditions are equivalent:(i) The curve f = 0 passes through the origin and µ0(f) = (d− 1)2 − [d/2],(ii) The curve f = 0 has d− [d/2] irreducible components. Each irreducible component of the curve passes through the

origin. If d ≡ 0 (mod 2) then all components are of degree 2 and intersect pairwise at 0 with multiplicity 4. If d 6≡ 0(mod 2) then all but one component are of degree 2 and intersect pairwise at 0 with multiplicity 4, the remaining
component is linear and is tangent to all components of degree 2.
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The proof of Theorem 1.4 is given in Section 4.
Remark 1.5.The implication (ii)⇒ (i) holds for any d > 2. The assumption d 6= 4 is necessary for the implication (i)⇒ (ii). Take
f(x, y) = x

(
y3−x2) which is a simple singularity of type E7. Then f is of degree d = 4, µ0(f) = (d−1)2− [d/2] = 7 andcondition (ii) fails.

2. Preparatory lemmas

Let us begin with the following well-known properties of the Milnor number.
Lemma 2.1.(i) If f = f0 f̃ in C[x, y] with f0(0) 6= 0 then µ0(f) = µ0 (̃f).(ii) If f = f1 · · · fm in C[x, y], fi(0) = 0 for i = 1, . . . , m, then

µ0(f) +m− 1 = m∑
i=1 µ0(fi) + 2 ∑16i<j6mi0(fi, fj ).

For a proof where the topological arguments are used see [9, Theorem 6.5.1, p. 145]. For a proof based on the propertiesof intersection numbers see e.g. [1, Proposition 2.4, p. 13].
Lemma 2.2.
Let f be an irreducible polynomial of degree d > 1, f(0) = 0. Then µ0(f) 6 (d−1)(d−2) with equality if and only if the
curve f = 0 is rational, its projective closure C has exactly one singular point 0 ∈ C2 and f = 0 is unibranch at 0.

Proof. Apply the formula for the genus g of C (see [9, Corollary 7.1.3]): 2g = (d− 1)(d−2)−∑P (µP + rP −1), where
rP is the number of branches of C passing through P.
Example 2.3.The polynomial f = xd−1 + yd is irreducible and µ0(f) = (d− 1)(d− 2).
Let f = 0 be a curve of degree d > 1 with an isolated singular point at 0 ∈ C2. Let fi = 0, i = 1, . . . , m, be irreduciblecomponents of f = 0 passing through 0 and let di = deg fi for i = 1, . . . , m. Then f = f0f1 · · · fm in C[x, y], where
f0(0) 6= 0.
Lemma 2.4.
Let Λ = {(i, j) ∈ N2 : 1 6 i < j 6 m, fi = 0, fj = 0 are transverse (i.e. their tangent cones intersect only at 0) and
di > 1 or dj > 1}. Then µ0(f) 6 (d− 1)2 − d+m− 2 ·#Λ.

Proof. Let f̃ = f1 · · · fm. Observe that for (i, j) ∈ Λ we have i0(fi, fj ) = (ord0fi)(ord0fj ) < didj since di > 1 or dj > 1(if fi is irreducible of degree di > 1 then ord0fi < di). By Lemma 2.2 we get µ0(fi) 6 (di− 1)(di− 2) for i = 1, . . . , m.Now, Lemma 2.1 implies
µ0(f) +m− 1 = µ0 (̃f) +m− 1 6

m∑
i=1 (di− 1)(di− 2) + 2∑(i,j) /∈Λi0(fi, fj ) + 2∑(i,j)∈Λi0(fi, fj )

6
m∑
i=1 (di− 1)(di−2) + 2∑(i,j) 6∈Λdidj + 2∑(i,j)∈Λ(didj− 1) = (d− 1)2 − d+ 2m− 2 ·#Λ − 1
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Lemma 2.5.
We have that µ0(f) 6 (d−1)2 −d+m. The equality µ0(f) = (d− 1)2 −d+m holds if and only if µ0(fi) = (di− 1)(di− 2)
and i0(fi, fj ) = didj for 1 6 i < j 6 m.

Proof. The inequality µ0(f) 6 (d− 1)2 − d+m follows from Lemma 2.4 (see also [6, Proposition 6.3]). By Lemma 2.1we can rewrite the equality µ0(f) = (d− 1)2 − d+m in the form
m∑
i=1 µ0(fi) + 2 ∑16i<j6mi0(fi, fj ) = m∑

i=1 (di− 1)(di− 2) + 2 ∑16i<j6mdidj .

We have that µ0(fi) 6 (di− 1)(di− 2) by Lemma 2.2 and i0(fi, fj ) 6 didj by Bézout’s theorem which together with theequality above imply the lemma.
Lemma 2.6.
Let d > 2. If µ0(f) = (d− 1)2 − d+m then all irreducible components of the curve f = 0 pass through 0 ∈ C2.
Proof. Let d̃ = deg f̃ . Clearly d̃ 6 d. We have (d− 1)2 − d + m = µ0(f) = µ0 (̃f) and µ0 (̃f) 6 (d̃− 1)2 − d̃ + m byLemma 2.5. The inequalities d > 2, d̃ 6 d and (d− 1)2 − d 6 (d̃− 1)2 − d̃ imply d̃ = d. Therefore deg f0 = d − d̃ = 0and f0 is a constant.
Lemma 2.7.#{i ∈ [1, m] : di > 1} 6 d − m.

Proof. Let I = {i ∈ [1, m] : di > 1}. Then I = {i ∈ [1, m] : ord0fi < di} and # I 6
∑

i∈I(di − ord0fi) =∑m
i=1(di − ord0fi) 6 d − ord0f 6 d − m.

A line l = 0 is tangent to the curve f = 0 (at 0 ∈ C2) if i0(f, l) > ord0f . We denote by T (f) the set of all tangents at 0to f = 0. We have #T (f) 6 ord0f 6 deg f − 1 if f is not homogeneous. For two polynomials f, g, T (fg) = T (f) ∪ T (g).Therefore we get #T (fg) 6 #T (f) + #T (g)− 1 if T (f) ∩ T (g) 6= ∅.
Lemma 2.8.
Let fi, i = 1, . . . , k, be irreducible polynomials of degree di > 1 such that fi(0) = 0 for i = 1, . . . , k. Suppose that the
curves fi = 0, i = 1, . . . , k, have a common tangent at 0. Then #T (f1 · · · fk ) 6∑k

i=1(di−1)− k + 1.

Proof. If k = 1 it is clear. Suppose that k > 1 and that the lemma is true for the sequences of k − 1 polynomials.Let f1, . . . , fk be a sequence of k irreducible polynomials of degree > 1 such that the curves fi = 0, i = 1, . . . , k , havea common tangent at 0. Then by the induction hypothesis #T (f1 · · · fk−1) 6 ∑k−1
i=1 (di−1) − (k − 1) + 1. On the otherhand #T (fk ) 6 dk − 1 and we get #T (f1 · · · fk ) 6 #T (f1 · · · fk−1) + #T (fk )− 1 6
∑k

i=1(di− 1)− (k − 1), since f1 · · · fk−1and fk have a common tangent.
3. Proof of Theorem 1.1

Let f be a polynomial of degree d > 1 such that f(0) = 0 and µ0(f) < +∞. We assume that f is not homogeneous. Let
m be the number of irreducible components of the curve f = 0 passing through 0 ∈ C2.
Lemma 3.1.
If m 6 d − [d/2] then µ0(f) 6 (d− 1)2 − [d/2]. The equality µ0(f) = (d− 1)2 − [d/2] implies m = d − [d/2].
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Proof. Suppose that m 6 d− [d/2]. By the first part of Lemma 2.5 we get µ0(f) 6 (d− 1)2−d+m 6 (d− 1)2− [d/2].If µ0(f) = (d− 1)2 − [d/2] then (d− 1)2 − d+m = (d− 1)2 − [d/2], so m = d − [d/2].
Lemma 3.2.
If m > d − [d/2] + 1 then µ0(f) < (d− 1)2 − [d/2].
Proof. Write f = f0f1 · · · fm, where f0(0) 6= 0 and fi are irreducible with fi(0) = 0 for i = 1, . . . , m. Since the sequence
d 7→ d − [d/2] is increasing it suffices to check the lemma for the polynomial f̃ = f1 · · · fm. In what follows we write finstead of f̃ and put di = deg fi for i = 1, . . . , m. Since f is not homogeneous we have m < d. Let k = #{i : di > 1}.From d1 + · · ·+ dm = d it follows that k > 1. Note also that m− k = #{i : di = 1} > 0 since by Lemma 2.7 we have
k 6 d−m and consequently m−k > m− (d−m) = 2m−d > d− 2[d/2]+2 > 0. We label f1, . . . , fm so d1 > . . . > dm.Therefore we get d1 > . . . > dk > 2 and dk+1 = . . . = dm = 1. Let us consider two cases.
Case 1. The curves f1 = 0, . . . , fk = 0 have a common tangent. By Lemma 2.8 we have #T (f1 · · · fk ) 6∑k

i=1(di− 1)−
k+1 = ∑m

i=1(di− 1)−k+1 = d−m−k+1. Therefore we get m−k−#T (f1 · · · fk ) > m−k−(d−m−k+1) = 2m−d−1.Note that 2m−d−1 > 2(d− [d/2]+1)−d+1 > 0. Thus there are at least 2m−d−1 > 0 linear forms in the sequence
fk+1, . . . , fm that are transverse to the curve f1 · · · fk = 0 and we get #Λ > k(2m−d−1) > 2m−d−1. Consequently byLemma 2.4 we obtain µ0(f) 6 (d− 1)2−d+m−2(2m−d− 1) = (d− 1)2 +d−3m+2 6 (d− 1)2 +d−3(d− [d/2]+1)+2 =(d−1)2 − [d/2]− 2(d − [d/2])− 1 < (d− 1)2 − [d/2].
Case 2. The curves f1 = 0, . . . , fk = 0 have no common tangent. Then for every linear form fj , k + 1 6 j 6 m, thereexists a polynomial fi, 1 6 i 6 k , such that fi, fj are transverse. Therefore #Λ > m − k and by Lemma 2.4 we get
µ0(f) 6 (d− 1)2−d+m−2(m−k) = (d− 1)2−d−m+2k . Since by Lemma 2.7 we have k 6 d−m the above bound for µ0(f)implies µ0(f) 6 (d− 1)2+d−3m 6 (d− 1)2+d−3(d− [d/2]+1) = (d− 1)2− [d/2]−2(d−2[d/2])−3 < (d−1)2− [d/2].
Now from Lemmas 3.1 and 3.2 we get µ0(f) 6 (d− 1)2 − [d/2] which proves Theorem 1.1.
4. Proof of Theorem 1.4

To show that a curve f = 0 of degree d > 4 with µ0(f) = (d− 1)2− [d/2] does not have irreducible components of degree 3we need
Lemma 4.1.
Let f, g ∈ C[x, y] be irreducible polynomials, deg f = 3, degg = 2, f(0) = g(0) = 0. Suppose that the curve f = 0 has a
singular point at 0 and #T (f) = 1. Then

i0(f, g) < deg f degg = 6.
Proof. If f = 0 and g = 0 have no common tangent then i0(f, g) = ord0f ord0g = ord0f < 3. Thus we mayassume that f = x2 + f+, g = x + g+, where f+, g+ are homogeneous forms of degree 3 and 2, respectively. We get
i0(f, g) = i0(f −xg, g) = i0(f+ − xg+, g) = 3 · 1 for f+ − xg+ = 0 and g = 0 have no common tangent.
Lemma 4.2.
Let f be a polynomial of degree d > 2 such that f(0) = 0. Suppose that µ0(f) = (d− 1)2−d+m, where m is the number
of irreducible components of the curve f = 0 passing through 0 ∈ C2. Then f = f1 · · · fm in C[x, y] with irreducible fi,
fi(0) = 0 for i = 1, . . . , m. Let di = deg fi for i = 1, . . . , m. Then #T (fi) = 1 and i0(fi, fj ) = didj for i < j. If m < d then
f = 0 has at most one linear component and has no two components of degree 2 and 3.

Proof. By Lemmas 2.5 and 2.6 we get f = f1 · · · fm in C[x, y], fi irreducible, fi(0) = 0, i0(fi, fj ) = didj and µ0(fi) =(di− 1)(di−2). We have #T (fi) = 1 for the curve fi = 0 has only one branch at 0 by Lemma 2.2.Suppose that the curve f = 0 has two linear components fj = 0 and fk = 0, j 6= k . Then there is no component fi = 0of f = 0 of degree di > 1 (if fi = 0 had degree di > 1 then we would get i0(fi, fj ) = i0(fi, fk ) = di > 1 which is impossible
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for #T (fi) = 1). Therefore if f = 0 has two linear components then all components are linear and intersect pairwisewith multiplicity 1. Thus m = d and f is a homogeneous form of degree d.Therefore, if m < d then there exists at most one linear component. Since i0(fi, fj ) = didj if i < j there are no twocomponents of degree 2 and 3 by Lemma 4.1.
Now, we can pass to the proof of Theorem 1.4.
Proof of Theorem 1.4. (i)⇒ (ii) Assume that µ0(f) = (d−1)2 − [d/2], where d > 1 and d 6= 4. Then f = 0 has
m = d− [d/2] irreducible components passing through 0 ∈ C2 by Lemmas 3.1 and 3.2. We have µ0(f) = (d− 1)2− [d/2] =(d− 1)2 − d+m with m = d − [d/2] < d and by Lemma 4.2 we can write f = f1 · · · fm, fi ∈ C[x, y] irreducible, fi(0) = 0.We label f1, . . . , fm so that d1 > . . . > dm > 1.
Case 1: d ≡ 0 (mod 2). Then m = d/2 and d1 + · · ·+ dm = d. This is possible if and only if (d1, . . . , dm) = (2, . . . , 2)or (d1, . . . , dm) = (3, 2, . . . , 2, 1), where 2 appears m − 2 = d/2 − 2 > 0 times since d > 4. If (d1, . . . , dm) = (2, . . . , 2)then the theorem follows from Lemma 4.2. The case (d1, . . . , dm) = (3, 2, . . . , 2, 1) cannot occur by Lemma 4.1.
Case 2. Case 2: d 6≡ 0 (mod 2). In this case we have m = (d + 1)/2. From d1 + · · · + dm = d it follows that(d1, . . . , dm) = (2, . . . , 2, 1). We apply Lemma 4.2.The implication (ii)⇒ (i) follows immediately from Lemma 2.1 (ii).
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