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A NOTE ON THE DISCRIMINANT

Arkadiusz Płoski
Technical University, Kielce, Poland

Let F�X� Y� = Yd + a1�X�Y
d−1 + · · · + ad�X� be a polynomial in n+ 1 variables

�X� Y� = �X1� � � � � Xn� Y� with coefficients in an algebraically closed field �. Assuming
that the discriminant D�X� = discY F�X� Y� is nonzero we investigate the order ordPD
for P ∈ �n. As application we get a discriminant criterion for the hypersurface F = 0
to be nonsingular.

Key Words: Discriminant of a polynomial; Nonsingular hypersurface.
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PRELIMINARIES

Let � be a fixed algebraically closed field of arbitrary characteristic. A
nonconstant polynomial F in N > 0 variables defines a hypersurface F = 0 which
is by definition the set of all polynomials aF where a ∈ �\�0�. Let V�F� = �P ∈
�N � F�P� = 0� be the set of zeroes of the polynomial F . The order ordPF is the
lowest degree in the expansion of F at P obtained by translation of coordinates.
Thus ordPF > 0 if and only if P ∈ V�F�. A point P ∈ �N is a simple (or nonsingular)
point of the hypersurface F = 0 if ordPF = 1. If all points P ∈ V�F� are simple the
hypersurface F = 0 is called nonsingular.

For the notion of discriminant which is basic in this article we refer the reader
to Abhyankar’s book [1], Lecture L4 (see also appendix IV of [4] or [2, § 42]).

1. RESULT

Let F�X� Y� = Y d + a1�X�Y
d−1 + · · · + ad�X� ∈ ��X� Y� be a polynomial in n+

1 variables �X� Y� = �X1� 	 	 	 � Xn� Y� of degree d > 0 in Y . Let D�X� = discY F�X� Y�
be the Y -discriminant of F (if d = 1, then D�X� = 1) and assume that D�X� �= 0
in ��X�. Then F has no multiple factors in ��X� Y�. Let 
 � V�F� → �n be the
projection given by 
�a1� 	 	 	 � an� b� = �a1� 	 	 	 � an�. In the sequel, we write P =
�a1� 	 	 	 � an� and Q = �a1� 	 	 	 � an� b�. We put multQ
 = ordbF�P� Y� for Q ∈ V�F�.
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4284 PŁOSKI

Then ∑
Q∈
−1�P�

multQ
 = d

for P ∈ �n. Obviously, we have #
−1�P� ≤ d with equality if and only if P �∈ V�D�
(see [1], Lecture L4, Observation (0.2)).

The main result of this note is the following theorem.

Theorem 1.1. For any P ∈ �n we have ordPD ≥ d − #
−1�P�. The equality
ordPD = d − #
−1�P� holds if and only if the following two conditions are satisfied:

(i) ordQF = 1 for all Q ∈ 
−1�P� i.e., all points of 
−1�P� are nonsingular;
(ii) If char� = p then p does not divide the multiplicities multQ
 for all Q ∈ 
−1�P�.

We prove Theorem 1.1 in Section of this note. Observe that if char� = 0, then
only Condition (i) is relevant. Let us note a few corollaries to Theorem 1.1.

Corollary 1.2. If ordPD = 0 or ordPD = 1, then all points of 
−1�P� are nonsingular.

Proof. If ordPD = 0, then P �∈ V�D� and #
−1�P� = d that is ordPD = d −
#
−1�P� = 0 and all points of 
−1�P� are nonsingular by Theorem 1.1(i). If ordPD= 1,
then by the first part of Theorem 1.1, we have #
−1�P� ≥ d − 1. In fact, #
−1�P� =
d − 1 because if #
−1�P� = d, then P �∈ V�D� and ordPD = 0. We have then
ordPD=d− #
−1�P� = 1 and again by Theorem 1.1(i), we get the assertion. �

Corollary 1.3. If Q is a singular point of F = 0 (i.e., ordQF > 1), then multQ
 ≤
ord
�Q�D.

Proof. Let P = 
�Q�. Since Q ∈ 
−1�P� is singular, we get by Theorem 1.1 that
ordPD > d − #
−1�P�. On the other hand, it is easy to check that multQ
 ≤ d −
#
−1�P�+ 1. Therefore, we have multQ
 ≤ ord
�Q�D. �

The following property of the discriminant is well-known in the case � = C
(see [4, Appendix IV, Theorem 11 B]).

Corollary 1.4. Let F�A� Y� = Y d + A1Y
d−1 + · · · + Ad ∈ Z�A� Y� be the polynomial

with undeterminate coefficients A = �A1� 	 	 	 � Ad� and D�A� = discYF�A� Y�. Let r�a� be
the number of distinct roots of the polynomial F�a� Y� ∈ ��Y� where a = �a1� 	 	 	 � ad� ∈
�d. Then ordaD�A� ≥ d − r�a�. The equality ordaD�A� = d − r�a� holds if char� =
0 or char� = p and p does not divide the multiplicities of roots of the polynomial
F�a� Y�.

Proof. Observe that the hypersurface F�A� Y� = 0 is nonsingular and use
Theorem 1.1.

Corollary 1.5 (Discriminant Criterion for Nonsingular Hypersurfaces). Assume
that � is of characteristic zero. Then the hypersurface defined by

F�X� Y� = Y d + a1�X�Y
d−1 + · · · + ad�X� = 0
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A NOTE ON THE DISCRIMINANT 4285

is nonsingular if and only if

ordPD�a1�X�� 	 	 	 � ad�X�� = orda�P�D�A1� 	 	 	 � Ad��

where a�P� = �a1�P�� 	 	 	 � ad�P��, for all singular points P of the discriminant
hypersurface D�X� = 0.

Proof. Using Theorem 1.1 and Corollary 1.2, we see that the hypersurface
F�X� Y� = 0 is nonsingular if and only if ordPD�X� = d − #
−1�P� for all P ∈
�n such that ordPD�X� > 1. On the other hand, by Corollary 1.4, we have
that d − #
−1�P� = orda�P�D�A1� 	 	 	 � Ad�. By definition of the discriminant, D�X� =
D�a1�X�� 	 	 	 � ad�X�� and the corollary follows. �

2. A PROPERTY OF THE DISCRIMINANT

In the proof of Theorem 1.1, we need the following property of the
discriminant.

Lemma 2.1. Let D�A1� 	 	 	 � Ad� be the discriminant of the general polynomial F =
Y d + A1Y

d−1 + · · · + Ad. Then

D�A1� 	 	 	 � Ad� = �−1�
(
d
2

)
ddAd−1

d + �1�A1� 	 	 	 � Ad−1�A
d−2
d + · · · + �d−1�A1� 	 	 	 � Ad−1�

in Z�A1� 	 	 	 � Ad�, where ord0�i�A1� 	 	 	 � Ad−1� ≥ i+ 1 for i = 1� 	 	 	 � d − 1.

Proof. Let

I =
{
�p1� 	 	 	 � pd� ∈ Zd � pi ≥ 0 for i = 1� 	 	 	 � d and

d∑
i=1

ipi = d�d − 1�

}
	

Then the discriminant D�A1� 	 	 	 � Ad� is equal to the sum of monomials of the
form cp1�			�pdA

p1
1 	 	 	 A

pd
d where �p1� 	 	 	 � pd� ∈ I (see [1], Lecture L.4, Observation (03)

or [2],§ 42). It is easy to see that:

(a) If �p1� 	 	 	 � pd� ∈ I , then pd ≤ d − 1;
(b) If �p1� 	 	 	 � pd� ∈ I , then

∑d
i=1 pi ≥ d − 1 with equality if and only if �p1� 	 	 	 � pd� =

�0� 	 	 	 � 0� d − 1�.

Therefore, we get

D�A1� 	 	 	 � Ad� = c0�			�0�dA
d−1
d + �1�A1� 	 	 	 � Ad−1�A

d−2
d + · · · + �d−1�A1� 	 	 	 � Ad−1��

where ord0�i�A1� 	 	 	 � Ad−1� > i for i = 1� 	 	 	 � d − 1 and

c0�			�0�d = D�0� 	 	 	 � 0� 1� = discY �Y
d + 1� = �−1�

(
d
2

)
dd

�

Remark 2.2. Lemma 2.1 implies that ord0D�A1� 	 	 	 � Ad� = d − 1. Let d�A1� 	 	 	 �
Ad−1� = discY �Y

d−1 + A1Y
d−2 + · · · + Ad−1�. Then ord0d�A1� 	 	 	 � Ad−1�=d − 2. It is
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4286 PŁOSKI

easy to check that D�A1� 	 	 	 � Ad−1� 0� = discY �Y
d + A1Y

d−1 + · · · + Ad−1Y� =
d�A1� 	 	 	 � Ad−1�A

2
d−1. Therefore, ord0�d−1�A1� 	 	 	 � Ad−1� = ord0D�A1� 	 	 	 � Ad−1� 0� =

ord0d�A1� 	 	 	 � Ad−1�+ 2 = �d − 2�+ 2 = d.

From Lemma 2.1 and Remark 2.2 it follows that the Newton diagram
��ord0�k� d − k− 1� � �k �= 0� of the polynomial D = �0A

d−1
d + �1A

d−2
d + · · · + �d−1 ∈

Z�A1� 	 	 	 � Ad−1��Ad� intersects the axes at points �0� d − 1� and �d� 0�. All remaining
points of the diagram lie strictly above the segment joining these two points.

3. PROOF

Let f�X� Y� ∈ ���X� Y�� be a formal power series distinguished in Y with
order d > 0, i.e., such that ord f�0� Y� = d. Then by the Weierstrass Preparation
Theorem f�X� Y� = F�X� Y�U�X� Y� in ���X� Y�� where F�X� Y� = Y d + a1�X�Y

d−1 +
· · · + ad�X� ∈ ���X���Y� is a distinguished polynomial and U�0� 0� �= 0.

Let D�X� = discY F�X� Y�. Then we define �̃�f� = ord0D�X�− d + 1 if D�X� �=
0 and �̃�f� = +� if D�X� = 0.

Lemma 3.1. We have �̃�f� ≥ 0. The equality �̃�f� = 0 holds if and only if:

(i) ord0f = 1;
(ii) If char� = p, then p does not divide d.

Proof. Let D�X� �= 0. By Lemma 2.1, we have ord0D�A1� 	 	 	 � Ad� = d − 1 so
ord0D�X� = ord0D�a1�X�� 	 	 	 � ad�X�� ≥ d − 1 since ord0ai�X� ≥ 1 for i = 1� 	 	 	 � d.
Again by Lemma 2.1, we can write

D�X� = �−1�
(
d
2

)
ddad�X�

d−1 + D̃�X��

where ord0D̃�X� > d − 1. Thus if ord0ad�X� = 1 and p does not divide d, then
ord0D�X� = d − 1. If ord0ad�X� > 1 or p divides d, then ord0D�X� > d − 1. This
proves the lemma since ord0F�X� Y� = 1 if and only if ord0ad�X� = 1, and ord0f =
ord0F . �

Remark 3.2 (see [3, Lemma 5.10]). If char� = 0, then �̃�f� is equal to the Milnor
number of the algebroid curve f�cT� Y� = 0, where Xi = ciT (i = 1� 	 	 	 � r) is a line
intersecting transversally the discriminant hypersurface D�X� = 0.

Lemma 3.3. Let F�X� Y� = Y d + a1�X�Y
d−1 + · · · + ad�X� ∈ ��X� Y� be a

polynomial such that D�X� = discY F�X� Y� �= 0. For any Q = �a1� 	 	 	 � an� b� ∈ V�F�

we put FQ�X� Y� = F�a1 + X� 	 	 	 � an + Xn� b + Y� (therefore FQ�X� Y� is distinguished
in Y with order multQ
). Then for every P ∈ �n, we have

ordPD = ∑
Q∈
−1�P�

�̃�FQ�+ d − #
−1�P�	

D
ow

nl
oa

de
d 

by
 [

Po
lit

ec
hn

ik
a 

Sw
ie

to
kr

zy
sk

a]
, [

A
rk

ad
iu

sz
 P

lo
sk

i]
 a

t 0
4:

02
 2

9 
N

ov
em

be
r 

20
11

 



A NOTE ON THE DISCRIMINANT 4287

Proof. Let P = �a1� 	 	 	 � an� and r = #
−1�P�. Then 
−1�P� = �Q1� 	 	 	 � Qr�, where
Qi = �P� bi� with bi �= bj for i �= j. Let di = multQi


 = ordbi
F�a� Y�. Then F�P� Y� =

�Y − b1�
d1 	 	 	 �Y − br�

dr . We have to check that

ordPD =
r∑

i=1

�̃�F�P�bi�
�+ d − r	 (1)

Let FP�X� Y� = F�a1 + X1� 	 	 	 � an + Xn� Y� and DP�X� = D�a1 + X1� 	 	 	 � an + Xn�.
Then DP�X� = discY FP�X� Y� and ordPD�X� = ord0D�X�. Moreover, �FP��0�bi� =
F�P�bi�

for i = 1� 	 	 	 � r, and it suffices to prove (1) for FP at 0 ∈ �n. Henceforth, we
assume that P = 0 ∈ �n. First let us consider the case r = 1. Then (1) reduces (for
P = 0) to the formula

ord0D = �̃�F�0�b1�
�+ d − 1 provided that F�0� Y� = �Y − b1�

d	 (2)

The polynomials F�0�b1�
�X� Y� = F�X� b1 + Y� and F�X� Y� have the same Y -

discriminant, and hence (2) follows directly from the definition of �̃. Suppose that
r > 1. By Hensel’s Lemma, we have

F�X� Y� =
r∏

i=1

Fi�X� Y� in ���X���Y� with F�0� Y� = �Y − bi�
di 	

Let Di�X� = discY Fi�X� Y� for i = 1� 	 	 	 � r and Rij�X� = Y -resultant
Fi�X� Y�� Fj�X� Y� for i �= j. By the product formula for the discriminant

D�X� =
r∏

i=1

Di�X�
∏

1≤i<j≤r

Rij�X�
2�

we get

ord0D�X� =
r∑

i=1

ord0Di�X�

since Rij�0� = �bi − bj�
didj �= 0 for i �= j.

By Formula (2) (which applies to the polynomials with coefficients in ���X��),
we have

ord0Di = �̃��Fi��0�bi��+ di − 1 for i = 1� 	 	 	 � r	

Since �Fi��0�bi� and F�0�bi�
are associated in ���X� Y��, we can write

ord0Di = �̃�F�0�bi�
�+ di − 1

and

ord0D =
r∑

i=1

��̃�F�0�bi�
�+ di − 1� =

r∑
i=1

�̃�F�0�bi�
�+ d − r	

�
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4288 PŁOSKI

Proof of Theorem 1.1. Theorem 1.1 follows directly from Lemmas 3.1
and 3.3. �
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