Jumping numbers and multiplier ideals for complete ideals of 2-dimensional regular local rings.

Carlos GALINDO

(based on joint works with Francisco Monserrat and Fernando Hernando)

IMAC
Instituto Universitario de Matemáticas y Aplicaciones de Castellón

> Jornadas de Álgebra,
> Geometría Algebraica y Singularidades
> La Laguna
> Tenerife, June $10-11,2013$

Talk's objectives

- a: simple complete ideal of local ring at a closed point of a smooth complex algebraic surface.
- $P_{\mathfrak{a}}(t)$: Poincaré series associated with the sequence of multiplier ideals of \mathfrak{a}.
- Objective 1: to show that $P_{\mathfrak{a}}(t)$ is "rational".
- Objective 2: to obtain a formula for the log-canonical threshold of a reduced germ of a plane curve.

Based on:

Objective 1: C. G. \& F. Monserrat, The Poincaré series of multiplier ideals of a simple complete ideal in a local ring of a smooth surface, Advances in Mathematics 225 (2010), 1046-1068.
Objective 2: C. G., F. Hernando \& F. Monserrat, The log-canonical threshold of a plane curve, ArXiv:1211.6274v1.

Multiplier ideal sheaf of an ideal sheaf

- a: ideal sheaf on a smooth variety Y over \mathbb{C}.
- log resolution $\pi: X \longrightarrow Y$ of \mathfrak{a} : birational, proper, X smooth,

$$
\mathfrak{a} \cdot \mathcal{O}_{X}=\mathcal{O}_{X}(-D)
$$

where D is an effective divisor on X such that $D+\operatorname{except}(\pi)$ has SNC support.

Definition

Let $\lambda \in \mathbb{Q}>0$. Multiplier ideal sheaf of \mathfrak{a} with coefficient λ :

$$
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right):=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor\right)
$$

Notation: $\left\lfloor\sum a_{i} E_{i}\right\rfloor:=\sum\left\lfloor a_{i}\right\rfloor E_{i}, \quad K_{X / Y} \equiv K_{X}-\pi^{*} K_{Y}$.
Independent of the log resolution

"Good" properties of multiplier ideals

Multiplier ideals have become an important tool in algebraic geometry due to their interesting properties:

- Vanishing theorems.
- Multiplier ideals provide a "measure" of the singularities.
- Analytic description: If Y is a smooth affine variety and

$$
\mathfrak{a}=\left\langle f_{1}, f_{2}, \ldots, f_{r}\right\rangle \subseteq \mathcal{O}_{Y}(Y):
$$

$$
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)^{a n}=\text { locally }\left\{h \text { holomorphic } \left\lvert\, \frac{|h|^{2}}{\left(\sum\left|f_{i}\right|^{2}\right)^{\lambda}}\right. \text { is locally integrable }\right\} .
$$

"Smaller" multiplier ideals correspond to "worse" singularities.
Reference: Positivity in Algebraic Geometry II (R. Lazarsfeld).

- Multiplier ideals are integrally closed (or complete).
- In dimension 2, every integrally closed ideal is a multiplier ideal (Lipman-Watanabe (2003), Favre-Jonsson (2005)).
- False in general (Lazarsfeld-Lee (2007)).
- Examples of multiplier ideals are hard to compute. Very few cases are known:
- Multiplier ideals of monomial ideals (Howald, 2001).
- Multiplier ideals of hyperplane arrangements (Mustaţǎ, 2006) (related works: N. Budur and M. Saito).

Jumping numbers

Jumping numbers (i)

$Y:=\operatorname{Spec}(R)$, where $R=\mathcal{O}_{Z, O}, Z$ smooth complex surface.
\mathfrak{a} : ideal sheaf on $Y ; \quad \pi: X \rightarrow Y$ log resolution of \mathfrak{a}.

$$
\begin{gathered}
\mathfrak{a} \cdot \mathcal{O}_{X}=\mathcal{O}_{X}(-D), \quad D=\sum_{i=1}^{n} b_{i} E_{i} \quad, K_{X / Y}=\sum_{i=1}^{n} a_{i} E_{i} \text { and } \\
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)=\left\{h \in R \mid \operatorname{div}\left(\pi^{*} h\right)+K_{X / Y}-\lfloor\lambda D\rfloor \geq 0\right\}= \\
=\left\{h \in R \mid \nu_{E_{i}}(h) \geq\left\lfloor\lambda b_{i}\right\rfloor-a_{i} \forall i\right\} .
\end{gathered}
$$

$$
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)=\mathcal{J}\left(\mathfrak{a}^{\lambda+\epsilon}\right) \text { for sufficiently small } \epsilon>0 .
$$

Jumping numbers

Jumping numbers (ii)

There exists an increasing sequence of rational numbers $0=\lambda_{0}<\lambda_{1}<\lambda_{2}<\cdots$ s.t. $\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)$ are constant for $\lambda \in\left[\lambda_{i}, \lambda_{i+1}[\right.$ and

$$
R \supsetneqq \mathcal{J}\left(\mathfrak{a}^{\lambda_{1}}\right) \supsetneqq \mathcal{J}\left(\mathfrak{a}^{\lambda_{2}}\right) \supsetneqq \cdots .
$$

$\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$ are called jumping numbers $\left(\lambda_{1}\right.$: log-canonical threshold).

Definition

$\lambda \in \mathbb{Q}_{>0}$ is a candidate jumping number from a prime exceptional divisor E_{i} if $\lambda b_{i} \in \mathbb{Z}$.

- The set of jumping numbers of \mathfrak{a} is, in general, strictly contained in the set of non trivial candidate jumping numbers:

$$
\left\{\left.\frac{a_{i}+m}{b_{i}} \right\rvert\, m \in \mathbb{Z}_{>0}\right\}
$$

- Periodicity: If $\lambda>2$,
λ is a jumping number $\Leftrightarrow \lambda-1$ is a jumping number.

Objective 1

To compute the Poincaré series:

$$
P_{\mathfrak{a}}(t):=\sum_{\lambda \in \mathcal{H}} \operatorname{dim}_{\mathbb{C}}\left(\frac{\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)}{\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}\right) t^{\lambda}
$$

when \mathfrak{a} is a simple complete ideal of R and \mathcal{H} is its set of jumping numbers.

- λ^{-}being the largest jumping number less than λ.

Expressions of the jumping numbers (i)

There exists a one to one correspondence among

- Simple complete ideals \mathfrak{a}.
- Plane divisorial valuations ν of the fraction field of R (centered at R).
- Finite simple sequences of point blowing-ups:

$$
X=X_{n} \rightarrow X_{n-1} \rightarrow \cdots \rightarrow X_{1} \rightarrow \operatorname{Spec}(R)
$$

(log resolution of \mathfrak{a}).

Jumping numbers

Expressions of the jumping numbers (ii)

ν : divisorial valuation defining a simple complete ideal \mathfrak{a} of R.
If $\mathfrak{a} \cdot \mathcal{O}_{X}=\mathcal{O}_{X}(-D): D=\sum_{j=1}^{n} b_{j} E_{j}=\sum_{j=1}^{n} \nu\left(\varphi_{j}\right) E_{j}$.
φ_{j} : General element for $E_{j} \equiv$ element of R giving an equation of an analytically irreducible germ of curve whose strict transform on X_{j} is smooth and intersects E_{j} transversally at a non-singular point of the exceptional locus.

g : Number of Puiseux pairs; $\quad g^{*}$: Number of "star vertices".
Maximal contact values:
$\bar{\beta}_{k}=\nu\left(\varphi_{i_{k}}\right) \quad k=0,1, \ldots, g, \bar{\beta}_{g+1}=\nu\left(\varphi_{n}\right)=\nu(\mathfrak{a})$.

Jumping numbers

Expressions of the jumping numbers (iii)

Jumping numbers

If \mathfrak{a} is a simple complete ideal, the set of jumping numbers of \mathfrak{a} is $\mathcal{H}=\cup_{i=1}^{\sigma^{*}+1} \mathcal{H}_{i}$, where

$$
\mathcal{H}_{i}:=\left\{\lambda(i, p, q, r):=\frac{p}{e_{i-1}}+\frac{q}{\bar{\beta}_{i}}+\frac{r}{e_{i}} \left\lvert\, \frac{p}{e_{i-1}}+\frac{q}{\bar{\beta}_{i}} \leq \frac{1}{e_{i}}\right. ; p, q \geq 1, r \geq 0\right\}
$$

whenever $1 \leq i \leq g^{*}$, and

Expressions of the jumping numbers (iv)

Jumping numbers

$$
\mathcal{H}_{g^{*}+1}:=\left\{\lambda\left(g^{*}+1, p, q\right): \left.=\frac{p}{e_{g^{*}}}+\frac{q}{\bar{\beta}_{g^{*}+1}} \right\rvert\, p, q \geq 1\right\},
$$

p, q and r being integer numbers and $e_{i}=\operatorname{gcd}\left(\bar{\beta}_{0}, \ldots, \bar{\beta}_{i}\right)$.
T. Järvilehto, Jumping numbers of a simple complete ideal in a two-dimensional regular local ring. Mem. Amer. Math. Soc. 214 (2011). Also (curve case): D. Naie (2009), K. Tucker (PhD. dissertation, 2010).

Jumping numbers

Jumping numbers of a general curve of a

C : General curve of \mathfrak{a}, defined by φ_{n}.

$$
\mathcal{J}(\lambda C) \quad \mathcal{J}\left(\mathfrak{a}^{\lambda}\right)
$$

$\mathcal{H}_{C}:=\{$ Jumping numbers of $C\}$.
$\Omega:=\{\lambda \in] 1,2[\mid \lambda$ is a j.n. of \mathfrak{a} and $\lambda-1$ is not a j.n. $\} \subseteq \mathcal{H}_{g^{*}+1}$.

$$
\mathcal{H}=\left(\mathcal{H}_{C} \backslash\{1\}\right) \cup\left\{\lambda+k \mid \lambda \in \Omega \wedge k \in \mathbb{Z}_{\geq 0}\right\} .
$$

Contribution

The multiplier ideal preceding a given one

$\Delta:=\left\{E_{j} \mid \lambda\right.$ is a candidate jumping number from $\left.E_{j}\right\}$

$$
\underbrace{\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor\right)=\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}_{\left\{h \in R \mid \nu_{E_{i}}(h) \geq \lambda b_{i}-a_{i} \forall i\right\}} \subsetneq \underbrace{\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+\sum_{E_{j} \in \Delta} E_{j}\right)}_{\left\{h \in R \mid \nu_{E_{i}}(h) \geq \lambda b_{i}-a_{i} \forall i \notin \Delta \wedge \nu_{E_{i}}(h) \geq \lambda b_{i}-a_{i}-1 \quad \forall i \in \Delta\right\}}
$$

For each $E_{j} \in \Delta$:

$$
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right) \subseteq \underbrace{\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{j}\right)}_{\left\{h \in R \mid \nu_{E_{i}}(h) \geq \lambda b_{i}-a_{i} \forall i \neq j \wedge \nu_{E_{j}}(h) \geq \lambda b_{j}-a_{j}-1\right\}} \subseteq \mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right) .
$$

Question: For which $E_{j} \in \Delta$

$$
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right) \subsetneq \pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{j}\right) ?
$$

Contribution

Contribution of divisors to candidate jumping numbers (i)

K.E. Smith, H.M. Thompson, Irrelevant exceptional divisors for curves on a smooth surface, Contemp. Math., vol. 448 (2007).

Definition

Let λ be a jumping number of \mathfrak{a}. E_{j} contributes λ whenever
(1) λ is a candidate jumping number from E_{j} and
(2) $\mathcal{J}\left(\mathfrak{a}^{\lambda}\right) \subsetneq \pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{j}\right)$.

Contribution

Contribution of divisors to candidate jumping numbers (ii)

Criterion of contribution:

- Assume that λ is a jumping number. Then E_{j} contributes λ if and only if λ is a candidate jumping number from E_{j} and

$$
-\lfloor\lambda D\rfloor \cdot E_{j} \geq 2
$$

- Moreover, if E_{j} contributes some jumping number, then $E_{j}=F_{i}$ for some $i \in\left\{1, \ldots, g^{*}+1\right\}$.
(K. Tucker (2008): Extension to surfaces with rational singularities).

Contribution

Example

Let $\mathfrak{a} \subseteq R=\mathbb{C}[x, y]_{(x, y)}$ be the simple complete ideal associated with a divisorial valuation ν centered at R with maximal contact values $\bar{\beta}_{0}=6, \bar{\beta}_{1}=10, \bar{\beta}_{2}=45$ and $\bar{\beta}_{3}=92$.

$D=6 E_{1}+10 E_{2}+18 E_{3}+30 E_{4}+32 E_{5}+34 E_{6}+36 E_{7}+38 E_{8}+40 E_{9}+$
$42 E_{10}+44 E_{11}+45 E_{12}+90 E_{13}+91 E_{14}+92 E_{15}=$
$(6,10,18,30,32,34,36,38,40,42,44,45,90,91,92)$.
Jumping number: $\lambda=\frac{23}{30}$.
$\lambda \in \mathcal{H}_{1} \cap \mathcal{H}_{2}$.
λ is candidate $\mathrm{j} . \mathrm{n}$. for: $E_{4}=F_{1}$ and $E_{13}=F_{2}$.

Contribution

Example (ii)

Recall: E divisor with exceptional support, E is antinef whenever $E \cdot E_{j} \leq 0$ for all j. We set E^{\sim} the antinef closure, i.e., the least antinef divisor $\geq E$.
$\pi_{*} \mathcal{O}_{X}(-E)=\pi_{*} \mathcal{O}_{X}\left(-E^{\sim}\right)$.
$\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor\right)$.
$\lfloor\lambda D\rfloor-K_{X / Y}=(3,5,9,16,16,17,17,18,18,19,19,19,39,38,38)$.
$\left(\lfloor\lambda D\rfloor-K_{X / Y}\right)^{\sim}=(4,6,11,18,19,20,20,20,20,20,20,20,40,40,40)$.
Previous jumping number: $\lambda^{-}=\frac{67}{90}$.
$\left.\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\left\lfloor\lambda^{-} D\right\rfloor\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{4}+E_{13}\right)\right)$.
$\left\lfloor\lambda^{-} D\right\rfloor-K_{X / Y}=(3,5,9,15,15,16,16,17,17,18,18,18,37,36,36)$.
$\left(\left\lfloor\lambda^{-} D\right\rfloor-K_{X / Y}\right)^{\sim}=(3,5,9,15,16,17,18,19,19,19,19,19,38,38,38)$.

Contribution

Example (iii)

$\left(\lfloor\lambda D\rfloor-K_{X / Y}\right)^{\sim}=(4,6,11,18,19,20,20,20,20,20,20,20,40,40,40)$.
$\left(\left\lfloor\lambda^{-} D\right\rfloor-K_{X / Y}\right)^{\sim}=(3,5,9,15,16,17,18,19,19,19,19,19,38,38,38)$.
Does E_{4} contribute λ ?
$\left(\lfloor\lambda D\rfloor-K_{X / Y}-E_{4}\right)^{\sim}=(3,5,9,15,16,17,18,19,20,20,20,20,40,40,40)$.
Then $\mathcal{J}\left(\mathfrak{a}^{\lambda}\right) \neq \pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{4}\right) \Rightarrow E_{4}$ contributes λ.
But: $\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right) \neq \pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{4}\right)$.
Does E_{13} contribute λ ?
$\left(\lfloor\lambda D\rfloor-K_{X / Y}-E_{13}\right)^{\sim}=(4,6,11,18,19,19,19,19,19,19,19,19,38,38,38)$.
Then $\mathcal{J}\left(\mathfrak{a}^{\lambda}\right) \neq \pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{13}\right) \Rightarrow E_{13}$ contributes λ.
But: $\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right) \neq \pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{13}\right)$.

Contribution

Determination of the divisors contributing a jumping number

Theorem 1

A jumping number λ of a simple complete ideal \mathfrak{a} belongs to the set $\mathcal{H}_{i}\left(1 \leq i \leq g^{*}+1\right)$ if and only if the prime exceptional divisor F_{i} contributes λ.

Corollary

The prime exceptional divisors that contribute a jumping number λ of a simple complete ideal \mathfrak{a} are those divisors F_{i} such that $\lambda \in \mathcal{H}_{i}$.

Other independent proofs (curve case):
(D. Naie, 2009), (K. Tucker, PhD dissertation, 2010).

Example

Consider \mathfrak{a} as in the first example.

Jumping number: $\lambda=\frac{7}{10} \in \mathcal{H}_{2}$.
λ is candidate $\mathrm{j} . \mathrm{n}$. for: $\left\{E_{2}, E_{4}=F_{1}, E_{9}\right.$ and $\left.E_{13}=F_{2}\right\}$.
The unique divisor contributing λ is $E_{13}=F_{2}$.
$\lambda^{-}=\frac{61}{90}$.
$\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+E_{2}+E_{4}+E_{9}+E_{13}\right)$.
But it can be checked that

$$
\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+F_{2}\right)
$$

The multiplier ideal preceding a given one

Let λ be a jumping number of \mathfrak{a}.
$\Delta:=\left\{E_{j} \mid \lambda\right.$ is a candidate jumping number for $\left.E_{j}\right\}$.
$\Delta^{\prime}:=\left\{E_{j} \mid E_{j}\right.$ contributes $\left.\lambda\right\}=\left\{F_{i} \mid \lambda \in \mathcal{H}_{i}\right\} \subseteq \Delta$.
$\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+\sum_{E_{j} \in \Delta} E_{j}\right)$.
Question:
Is it true that $\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+\sum_{F_{i} \in \Delta^{\prime}} F_{i}\right)$?
In the affirmative case, one can "control" $\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)$from

- $\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)$ and
- the indices i such that $\lambda \in \mathcal{H}_{i}$.

Answer

Theorem 2

Let λ be a jumping number of a simple complete ideal \mathfrak{a}. Then

$$
\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor+\sum_{l=1}^{s} F_{i_{l}}\right)=\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)
$$

where $\left\{i_{1}, i_{2}, \ldots, i_{s}\right\}$ is the set of indexes $i, 1 \leq i \leq g^{*}+1$, such that $\lambda \in \mathcal{H}_{i}$.

The Poincaré series

Theorem 3

The Poincaré series $P_{\mathfrak{a}}(t)=\sum_{\lambda \in \mathcal{H}} \operatorname{dim}\left(\frac{\mathcal{J}\left(\mathfrak{a}^{\lambda^{\lambda}}\right)}{\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}\right) t^{\lambda}$ has this expression:

$$
P_{\mathfrak{a}}(t)=\frac{1}{1-t} \sum_{i=1}^{g^{*}} \sum_{\lambda \in \mathcal{H}_{i}, \lambda<1} t^{\lambda}+\frac{1}{(1-t)^{2}} \sum_{\lambda \in \Omega} t^{\lambda}
$$

where

$$
\Omega:=\left\{\lambda \in \mathcal{H}_{g^{*}+1} \mid \lambda \leq 2 \text { and } \lambda-1 \notin \mathcal{H}_{g^{*}+1}\right\} .
$$

The Poincaré series

Key facts of the proof

Lemma

$$
\begin{aligned}
& \operatorname{dim} \frac{\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)}{\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}=\operatorname{dim} \frac{\pi_{*} \mathcal{O}_{X}\left(K_{X \mid X_{0}}-\lfloor\lambda D\rfloor+\sum_{\lambda \in \mathcal{H}_{i}} F_{i}\right)}{\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}= \\
& \quad=\sum_{\lambda \in \mathcal{H}_{i}} \underbrace{\operatorname{dim} \frac{\pi_{*} \mathcal{O}_{X}\left(K_{X \mid X_{0}}-\lfloor\lambda D\rfloor+F_{i}\right)}{\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}=\sum_{\lambda \in \mathcal{H}_{i}} d_{\lambda}^{i} .}_{d_{\lambda}^{i}} .
\end{aligned}
$$

Consequence:

$$
P_{\mathfrak{a}}(t)=\sum_{\lambda \in \mathcal{H}} \operatorname{dim}\left(\frac{\mathcal{J}\left(\mathfrak{a}^{\lambda^{-}}\right)}{\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)}\right) t^{\lambda}=\sum_{i=1}^{g^{*}+1} P_{i}(t)
$$

where $P_{i}(t):=\sum_{\lambda \in \mathcal{H}_{i}} d_{\lambda}^{i} t^{\lambda}$.

The Poincaré series

Computation of $P_{i}(t)=\sum_{\lambda \in \mathcal{H}_{i}} d_{\lambda}^{i} t^{\lambda}$

- $\lambda \in \mathcal{H}_{i}$ is a "primitive" element of \mathcal{H}_{i} if $\lambda-1 \notin \mathcal{H}_{i}$.
- When $1 \leq i \leq g^{*}:\left\{\right.$ Primitive elements of $\left.\left.\mathcal{H}_{i}\right\}=\mathcal{H}_{i} \cap\right] 0,1[$ $\mathcal{H}_{i}=\left\{\lambda+n \mid \lambda \in \mathcal{H}_{i} \cap\right] 0,1[$ and $n \in \mathbb{N}\}$.

$$
\left.\begin{array}{l}
\left.d_{\lambda}^{i}=1 \text { whenever } \lambda \in \mathcal{H}_{i} \cap\right] 0,1[\\
\text { If } \left.\lambda \in \mathcal{H}_{i} \cap\right] 0,1\left[\Rightarrow d_{\lambda+n}^{i}=d_{\lambda}^{i} \quad \forall n\right.
\end{array}\right\} \Rightarrow d_{\lambda}^{i}=1 \quad \forall \lambda \in \mathcal{H}_{i} .
$$

- When $i=g^{*}+1$:
$\left\{\right.$ Primitive elements of $\left.\mathcal{H}_{g^{*}+1}\right\}=\Omega$
$=\left\{\lambda \in \mathcal{H}_{g^{*}+1} \mid \lambda \leq 2\right.$ and $\left.\lambda-1 \notin \mathcal{H}_{g^{*}+1}\right\}$
$\mathcal{H}_{g^{*}+1}=\{\lambda+n \mid \lambda \in \Omega$ and $n \in \mathbb{N}\}$.

$$
\left.\begin{array}{l}
d_{\lambda}^{i}=1 \text { whenever } \lambda \in \Omega \\
\text { If } \lambda \in \Omega \Rightarrow d_{\lambda+n}^{i}=d_{\lambda}^{i}+n \forall n .
\end{array}\right\}
$$

The Poincaré series

Computation of $P_{i}(t)=\sum_{\lambda \in \mathcal{H}_{i}} d_{\lambda}^{i} t^{\lambda}$

- When $1 \leq i \leq g^{*}$:

$$
\begin{aligned}
P_{i}(t)=P_{i}\left(z_{i}^{e_{i-1} \bar{\beta}_{i}}\right)= & \frac{1}{1-z_{i}^{e_{i-1} \bar{\beta}_{i}}} \sum_{(p, q, s) \in B} z_{i}^{p \bar{\beta}_{i}+q e_{i-1}+\left(s+e_{i}\right) \frac{e_{i-1}}{e_{i}} \bar{\beta}_{i}} \\
& =\frac{1}{1-t} \sum_{\lambda \in \mathcal{H}_{i}, \lambda<1} t^{\lambda}
\end{aligned}
$$

- When $i=g^{*}+1$:

$$
\begin{gathered}
P_{g^{*}+1}(t)=P_{g^{*}+1}\left(z_{g^{*}+1}^{e_{g^{*}} \bar{\beta}_{g^{*}+1}}\right)=\frac{1}{\left(1-z_{g^{*}+1}^{e_{g^{*}} \bar{\beta}_{g^{*}+1}}\right)^{2}} \sum_{(s, q) \in T} z_{g^{*}+1}^{s \bar{\beta}_{g^{*}+1}+q e_{g^{*}}} \\
=\frac{1}{(1-t)^{2}} \sum_{\lambda \in \Omega} t^{\lambda} .
\end{gathered}
$$

Antecedents

Objective 2: the log-canonical threshold

Log-canonical threshold: minimum jumping number.
Antecedents:

- Analitically irreducible germ of curve (Igusa, 1977; Järvilehto, 2007): $\frac{1}{\beta_{0}}+\frac{1}{\beta_{1}}$.
- Product of two analitically irreducible germs of curve (Kuwata, 1999).
- For a plane curve (any number of branches):
- There exist suitable local coordinates such that lct is $1 / t$, where (t, t) is the unique diagonal point of the Newton polygon (Artal, Cassou-Nogués, Luengo, Melle-Hernández, 2008).
- There exist suitable local coordinates such that lct is the lct of the term ideal (Aprodu, Naie, 2010).
- Irreducible quasi-ordinary hypersurface singularity (Budur, González-Pérez, González-Villa).
Our goal: expression of the Ict of a reduced plane curve (any number of branches) in terms of maximal contact values.

Antecedents

$R=k[[x, y]]$: Formal power series ring with coefficients over an algebraically closed field k.
C : REDUCED curve defined by $f=f_{1} \cdots f_{r}, f_{i} \in R$ irreducible.
C_{i} : curve defined by f_{i}.
Log resolution of $\mathfrak{a}:=(f) \subseteq R$ (composition of blow-ups):

$$
\pi: X=X_{m} \xrightarrow{\pi_{m}} X_{m-1} \longrightarrow \cdots \longrightarrow X_{1} \xrightarrow{\pi_{1}} Y=\operatorname{Spec}(R) .
$$

Set of centers (constellation): $\mathcal{C}:=\left\{P_{i}\right\}_{i=1}^{m}$.
$\mathfrak{a} \cdot \mathcal{O}_{X}=\mathcal{O}_{X}(-D)$ with $D=\tilde{C}_{1}+\cdots+\tilde{\boldsymbol{C}}_{r}+b_{1} E_{1}+\cdots+b_{m} E_{m}$.

$$
\begin{gathered}
\mathcal{J}\left(\mathfrak{a}^{\lambda}\right)=\pi_{*} \mathcal{O}_{X}\left(K_{X / Y}-\lfloor\lambda D\rfloor\right)= \\
=\left\{h \in R \mid \nu_{E_{i}}(h) \geq\left\lfloor\lambda b_{i}\right\rfloor-a_{i} \forall i \text { and } \nu_{\tilde{c}_{i}}(h) \geq\lfloor\lambda\rfloor\right\} \\
\Rightarrow \operatorname{lct}(C)=\min _{1 \leq j \leq m}\left\{\bar{\alpha}_{j}:=\frac{a_{j}+1}{b_{j}}\right\} .
\end{gathered}
$$

Important vertices (1)

- Suppose that

$$
\underbrace{C_{1}, C_{2}, \ldots, C_{n}}_{\text {Singular }}, \underbrace{C_{n+1}, C_{n+2}, \ldots, C_{r}}_{\text {Smooth }}
$$

- $\mathcal{C}_{i}:=\left\{P_{j} \in \mathcal{C} \mid \tilde{C}_{i}\right.$ passes through $\left.P_{j}\right\}, \quad 1 \leq i \leq r$.
- Terminal satellite point for $h \in R$: satellite point $P_{j} \in \mathcal{C}$ such that $\left\{P_{k} \in \mathcal{C} \backslash\left\{P_{j}\right\}\right.$ s.t. the strict transform of H on X_{k} passes through P_{k} and $\left.P_{k} \gtrsim P_{j}\right\}$ is either empty or its minimum (with respect to the ordering "infinitely near" \gtrsim) is a free point.

Important vertices (2)

\mathcal{T}

$$
\mathcal{T}=\left\{P_{t_{i}} \mid i=1, \ldots, n\right\},
$$

where $P_{t_{i}}:=$ Minimum terminal satellite point of $\mathcal{C}_{i}, \quad 1 \leq i \leq n$.

\mathcal{F}

$$
\mathcal{F}:=\left\{P_{j} \in \mathcal{C} \mid P_{t_{i}} \gtrsim P_{j} \text { for some } P_{t_{i}} \in \mathcal{T}\right\} \cup \mathcal{C}_{n+1} \cdots \cup \mathcal{C}_{r} .
$$

Important Vertices

Example: $f=f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8}$ (proximity graph)

$$
\begin{aligned}
& \mathcal{C}_{1}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}\right\} . \\
& \mathcal{C}_{2}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{8}\right\} . \\
& \mathcal{C}_{3}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{9}, P_{10}, P_{11}\right\} . \\
& \mathcal{C}_{4}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{9}, P_{10}, P_{12}, P_{13}\right\} . \\
& \mathcal{C}_{5}=\left\{P_{1}, P_{2}, P_{16}, P_{17}\right\} . \\
& \mathcal{C}_{6}=\mathcal{C}_{7}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{14}, P_{15}\right\} . \\
& \mathcal{C}_{8}=\left\{P_{1}, P_{2}, P_{16}\right\} . \\
& \mathcal{T}=\left\{P_{t_{1}}=P_{7}, P_{t_{2}}=P_{8}, P_{t_{3}}=P_{11},\right. \\
& \left.\quad P_{t_{4}}=P_{13}, P_{t_{5}}=P_{17}\right\} . \\
& \mathcal{F}=\mathcal{C} .
\end{aligned}
$$

Example: $f=f_{1} f_{2} f_{3} f_{4} f_{5} f_{6} f_{7} f_{8}$ (dual graph)

$$
\begin{aligned}
& \mathcal{C}_{1}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}\right\} . \\
& \mathcal{C}_{2}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{8}\right\} . \\
& \mathcal{C}_{3}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{9}, P_{10}, P_{11}\right\} . \\
& \mathcal{C}_{4}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{9}, P_{10}, P_{12}, P_{13}\right\} . \\
& \mathcal{C}_{5}=\left\{P_{1}, P_{2}, P_{16}, P_{17}\right\} . \\
& \mathcal{C}_{6}=\mathcal{C}_{7}=\left\{P_{1}, P_{2}, P_{3}, P_{4}, P_{14}, P_{15}\right\} . \\
& \mathcal{C}_{8}=\left\{P_{1}, P_{2}, P_{16}\right\} .
\end{aligned}
$$

$\mathcal{F}=\mathcal{C}$.
Square: satellite point not in \mathcal{T}. Star:
satellite point in \mathcal{T}.

Important vertices (3). Initial separating points

Set of initial separating points, \mathcal{S} :
Points $P_{j} \in \mathcal{C}$ such that two components $C_{i_{1}}$ and $C_{i_{2}}$ of C are freely separated at P_{j}. That is:

- $\max _{\gtrsim}\left(\mathcal{C}_{i_{1}} \cap \mathcal{C}_{i_{2}}\right)=P_{j}$. (Separated at P_{j}).
- $\left(f_{i_{1}} \mid f_{i_{2}}\right)=(0, c)$-no common satellite points and c free ones- for some $c \leq \min \left\{l_{0}^{i_{1}}, l_{0}^{I_{2}}\right\}$. (Freely
 separated at P_{j}).
$I_{0}^{h}\left(I_{0}^{h+1}\right)$: free points P_{j} through which the strict transform of H pass (and all satellite points P, satisfy $P \gtrsim P_{j}$) if H is not (is) singular.

$$
\begin{gathered}
\mathcal{S}=\left\{P_{2}, P_{4}, P_{15}\right\} . \\
\mathcal{V}_{\mathcal{T}}:=\left\{\mathbf{v}_{j} \mid P_{j} \in \mathcal{T}\right\}, \quad \mathcal{V}_{\mathcal{S}}:=\left\{\mathbf{v}_{j} \mid P_{j} \in \mathcal{S}\right\} \\
\mathcal{V}=\mathcal{V}_{\mathcal{T}} \cup \mathcal{V}_{\mathcal{S}} .
\end{gathered}
$$

Important Vertices

Left and right accessibility

In the dual graph:

\leq denote the order induced by
$\Gamma(C) . \mathbf{v}_{j_{1}} \leq \mathbf{v}_{j_{2}}$ means that $\mathbf{v}_{j_{1}}$ belongs to $\left[\mathbf{v}_{1}, \mathbf{v}_{j_{2}}\right]$. By convention, if \mathbf{a}_{i} is an arrow that is a label of $\mathbf{v}_{j_{2}}$ then $\mathbf{v}_{j_{1}} \leq \mathbf{a}_{i}$ will mean $\mathbf{v}_{j_{1}} \leq \mathbf{v}_{j_{2}}$.

$$
\begin{aligned}
& \mathbf{v}_{j}^{<}:=\left\{\mathbf{a}_{i} \mid \mathbf{v}_{j} \not \leq \mathbf{a}_{i}\right\}, \\
& \mathbf{v}_{j}^{\geq}:=\left\{\mathbf{a}_{i} \mid \mathbf{v}_{j} \leq \mathbf{a}_{i}\right\} .
\end{aligned}
$$

$\sigma: \mathcal{V}_{\mathcal{F}}\left(:=\left\{\mathbf{v}_{j} \mid P_{j} \in \mathcal{F}\right)\right\} \rightarrow \mathbb{Z}$ given by

$$
\begin{gathered}
\sigma\left(\mathbf{v}_{j}\right)=\sum_{\mathbf{a}_{i} \in \mathbf{v}_{j}^{<}} c_{j i} \bar{\beta}_{0}^{i}-\sum_{\mathbf{a}_{i} \in \mathbf{v}_{j}^{\geq}} \bar{\beta}_{0}^{i}, \\
c_{j i}:= \begin{cases}\operatorname{card}\left(\left[\mathbf{v}_{1}, \mathbf{a}_{i}\right] \cap\left[\mathbf{v}_{1}, \mathbf{v}_{j}\right] \cap \mathcal{V}_{\text {free }}\right) & \text { if } \operatorname{ter}\left(\left[\mathbf{v}_{1}, \mathbf{a}_{i}\right] \cap\left[\mathbf{v}_{1}, \mathbf{v}_{j}\right]\right) \in \mathcal{S} \\
\bar{\beta}_{1}^{i} / \bar{\beta}_{0}^{i} & \text { otherwise. }\end{cases}
\end{gathered}
$$

Our result

Theorem (I)

Let C be s above. Then:

- (1) There exists a vertex $\mathbf{v}_{k} \in \mathcal{V}$ satisfying the conditions:
(a) $\sigma\left(\mathbf{v}_{j}\right)<0$ for all $\mathbf{v}_{j} \in\left[\mathbf{v}_{1}, \mathbf{v}_{k}\right] \cap \mathcal{V}$ and
(b) $\sigma\left(\mathbf{v}_{j}\right) \geq 0$ for all $\mathbf{v}_{j} \in \mathcal{V} \backslash\left[\mathbf{v}_{1}, \mathbf{v}_{k}\right]$.
- (2) The log-canonical threshold of C is the value $\bar{\alpha}_{k}$ above defined and it can be computed as follows:

Our result

Theorem (II)

- If $\mathbf{v}_{k}=\mathbf{v}_{t_{i}} \in \mathcal{V}_{\mathcal{T}}$, then

$$
\bar{\alpha}_{k}=\bar{\alpha}_{t_{i}}=\frac{\bar{\beta}_{0}^{i}+\bar{\beta}_{1}^{i}}{\sum_{s=1}^{r} \delta_{i s}},
$$

where
$\delta_{i s}= \begin{cases}\bar{\beta}_{0}^{i} \bar{\beta}_{1}^{s} & \text { if either } s=i, \text { or } s \neq i \text { and } \bar{\beta}_{0}^{i} \bar{\beta}_{1}^{s}=\bar{\beta}_{1}^{i} \bar{\beta}_{0}^{s} \leq I\left(f_{i}, f_{s}\right) \\ I\left(f_{i}, f_{s}\right) & \text { otherwise. }\end{cases}$

- If $\mathbf{v}_{k} \in \mathcal{V}_{\mathcal{S}}$, then

$$
\bar{\alpha}_{k}=\frac{\bar{\beta}_{0}^{i_{1}} \bar{\beta}_{0}^{i_{2}}+I\left(f_{i_{1}}, f_{i_{2}}\right)}{\bar{\beta}_{0}^{i_{1}} I\left(f_{i_{1}}, f_{i_{2}}\right)+\bar{\beta}_{0}^{i_{2}} \sum_{1 \leq s \leq r, s \neq i_{1}} I\left(f_{i_{1}}, f_{s}\right)},
$$

where $C_{i_{1}}$ and $C_{i_{2}}$ are any two components which are freely separated at P_{k}.

Our result

Example (i)

$$
\begin{aligned}
& \left\{\bar{\beta}_{0}^{1}, \bar{\beta}_{1}^{1}\right\}=\{5,17\} \\
& \left\{\bar{\beta}_{0}^{2}, \bar{\beta}_{1}^{2}\right\}=\{3,11\} \\
& \left\{\bar{\beta}_{0}^{3}, \bar{\beta}_{1}^{3}\right\}=\{2,11,\} \\
& \left\{\bar{\beta}_{0}^{4}, \bar{\beta}_{1}^{4}\right\}=\{2,13\} \\
& \left\{\bar{\beta}_{0}^{5}, \bar{\beta}_{1}^{5}\right\}=\{2,5\}
\end{aligned}
$$

$$
\mathcal{V}=\mathcal{V}_{\mathcal{S}} \cup \mathcal{V}_{\mathcal{T}}=\left\{\mathbf{v}_{2}, \mathbf{v}_{4}, \mathbf{v}_{7}, \mathbf{v}_{8}, \mathbf{v}_{11}, \mathbf{v}_{13}, \mathbf{v}_{15}, \mathbf{v}_{17}\right\}
$$

$$
\sigma\left(\mathbf{v}_{2}\right)=-\sum_{i=1}^{8} \bar{\beta}_{0}^{i}=-17
$$

$$
\sigma\left(\mathbf{v}_{7}\right)=2 \bar{\beta}_{0}^{5}+2 \bar{\beta}_{0}^{8}-\bar{\beta}_{0}^{1}-\bar{\beta}_{0}^{2}-\bar{\beta}_{0}^{3}-\bar{\beta}_{0}^{4}-\bar{\beta}_{0}^{6}-\bar{\beta}_{0}^{7}=-4
$$

$$
\sigma\left(\mathbf{v}_{8}\right)=2 \bar{\beta}_{0}^{5}+2 \bar{\beta}_{0}^{8}+\bar{\beta}_{1}^{1}-\bar{\beta}_{0}^{2}-\bar{\beta}_{0}^{3}-\bar{\beta}_{0}^{4}-\bar{\beta}_{0}^{6}-\bar{\beta}_{0}^{7}=14
$$

Our result

Example (iI). Log-canonical threshold

Then, $\mathbf{v}_{\mathbf{7}}$ is the distinguished vertex \mathbf{v}_{k} and

$$
\begin{gathered}
\operatorname{lct}(C)=\bar{\alpha}_{7}=\bar{\alpha}_{t_{1}}=\frac{\bar{\beta}_{1}^{1}+\bar{\beta}_{0}^{1}}{\bar{\beta}_{1}^{1} \bar{\beta}_{0}^{1}+\sum_{s=2}^{8} l\left(f_{1}, f_{s}\right)}= \\
=\frac{17+5}{17 \cdot 5+17 \cdot 3+17 \cdot 2+17 \cdot 2+2 \cdot 5 \cdot 2+17 \cdot 1+17 \cdot 1+2 \cdot 5 \cdot 1} \\
=\frac{11}{134} .
\end{gathered}
$$

Corollary: the case of 2 branches

Assume that the number of components of C is $r=2$ and, without loss of generality, that $\bar{\beta}_{1}^{1} / \bar{\beta}_{0}^{1} \leq \bar{\beta}_{1}^{2} / \bar{\beta}_{0}^{2}$. Then:
(a) If C_{1} and C_{2} are not freely separated, it holds that

$$
\operatorname{lct}(C)= \begin{cases}\frac{\bar{\beta}_{1}^{1}+\bar{\beta}_{0}^{1}}{\bar{\beta}_{1}^{1}\left(\bar{\beta}^{2}+\bar{\beta}^{2}\right)} & \text { if } \bar{\beta}_{1}^{1} \geq \bar{\beta}_{0}^{2}, \\ \left.\frac{\bar{\beta}^{2}+\bar{\beta}_{2}^{2}}{\bar{\beta}_{0}^{2}\left(\bar{\beta}_{1}^{2}\right.}{ }^{2} \bar{\beta}_{1}^{2}\right) & \text { otherwise. }\end{cases}
$$

(b) If, on the contrary, C_{1} and C_{2} are freely separated,

$$
\operatorname{lct}(C)= \begin{cases}\frac{\bar{\beta}_{0}^{1} \bar{\beta}_{0}^{2}+l\left(f_{1}, f_{2}\right)}{\left(\bar{\beta}_{0}^{1}+\bar{\beta}_{0}^{2}\right) l\left(f_{1}, f_{2}\right)} & \text { if } \frac{1}{c} \leq \frac{\bar{\beta}_{0}^{2}}{\bar{\beta}_{0}^{1}} \leq \boldsymbol{c}, \\ \frac{\bar{\beta}_{1}^{1}+\bar{\beta}_{0}^{1}}{\bar{\beta}_{0}^{1} \bar{\beta}_{1}^{1}+l\left(f_{1}, f_{2}\right)} & \text { if } \frac{\bar{\beta}_{0}^{2}}{\bar{\beta}_{0}^{1}}<\frac{1}{c}, \\ \bar{\beta}_{1}^{2}+\bar{\beta}_{0}^{2} & \text { otherwise },\end{cases}
$$

c being the integer such that $\left(f_{1} \mid f_{2}\right)=(0, c)$.

Lct of a complete ideal

Let \mathfrak{a} be a complete ideal of finite co-length in R (local regular and bidimensional). \mathfrak{a} has a unique factorization $\mathfrak{a}=\mathfrak{p}_{1}^{n_{1}} \cdots \mathfrak{p}_{r}^{n_{r}}$ as a product of simple complete ideals. Then,

$$
\operatorname{lct}(\mathfrak{a})=\operatorname{lct}\left(\sum_{i=1}^{r} D_{i}\right)
$$

where, for each $i=1, \ldots, r, D_{i}$ is a sum of n_{i} suitable chosen general curves of the ideal \mathfrak{p}_{i}.

Suitable chosen means that the curves meet the corresponding divisor at different points.

THANK YOU FOR YOUR ATTENTION

ORGANIZERS: THANK YOU VERY MUCH

