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Talk’s objectives

Talk’s objectives

@ a: simple complete ideal of local ring at a closed point of a
smooth complex algebraic surface.

@ P,(t): Poincaré series associated with the sequence of
multiplier ideals of a.

@ Objective 1: to show that P,(t) is “rational”.

@ Objective 2: to obtain a formula for the log-canonical
threshold of a reduced germ of a plane curve.

Based on:

Objective 1: C. G. & F. Monserrat, The Poincaré series of
multiplier ideals of a simple complete ideal in a local ring of a
smooth surface, Advances in Mathematics 225 (2010),
1046-1068.

Objective 2: C. G., F. Hernando & F. Monserrat, The
log-canonical threshold of a plane curve, ArXiv:1211.6274v1.
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Multiplier Ideals

Multiplier ideal sheaf of an ideal sheaf

@ a: ideal sheaf on a smooth variety Y over C.
@ Jog resolution m : X — Y of a: birational, proper, X
smooth,
a-Ox = Ox(-D),
where D is an effective divisor on X such that
D + except(w) has SNC support.

Definition
Let A € Q~o. Multiplier ideal sheaf of a with coefficient A:

J(0*) := mOx(Kx/y — [AD]).

Notation: |>_ a;E;| := > |aj]Ei, Kx/y = Kx — m*Ky.

Independent of the log resolution
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Multiplier Ideals

“Good” properties of multiplier ideals

Multiplier ideals have become an important tool in algebraic
geometry due to their interesting properties:
@ Vanishing theorems.

@ Multiplier ideals provide a “measure” of the singularities.
@ Analytic description: If Y is a smooth affine variety and
a= <f1,f2,...,fr> - Oy(Y)

2
T (@) = h holomorphic | B L - is locally integrable ¢ .
locally IBR

“Smaller” multiplier ideals correspond to “worse” singularities. J

Reference: Positivity in Algebraic Geometry Il (R. Lazarsfeld).
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Jumping Numbers

@ Multiplier ideals are integrally closed (or complete).

@ In dimension 2, every integrally closed ideal is a multiplier
ideal (Lipman-Watanabe (2003), Favre-Jonsson (2005)).

@ False in general (Lazarsfeld-Lee (2007)).

@ Examples of multiplier ideals are hard to compute. Very
few cases are known:

o Multiplier ideals of monomial ideals (Howald, 2001).
o Multiplier ideals of hyperplane arrangements (Mustata,
2006) (related works: N. Budur and M. Saito).
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Jumping numbers

Jumping numbers (i)

Y := Spec(R), where R = Oz o, Z smooth complex surface.
a: ideal sheafon Y; 7 : X — Y log resolution of a.
a- OX = Ox(—D), D= 27:1 b,'E,‘ s Kx/y = 27:1 a,-E,- and
J(a*)={he R|div(r*h) + Kx,y — |AD| > 0} =
={he R|vg(h) > |\bj] — & Vi}.

J(a*) = J(a**¢) for sufficiently small ¢ > 0.
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Jumping numbers

Jumping numbers (ii)

There exists an increasing sequence of rational numbers
0=2Xo <M\ < A2 <--- st J(at) are constant for A € [\j, 1]
and

R; j(a)“) 2 j(akz) 2 .

{\1, A2, ...} are called jumping numbers (\1: log-canonical
threshold).

Definition

X € Q-9 is a candidate jumping number from a prime
exceptional divisor E; if Ab; € Z.
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Jumping numbers

@ The set of jumping numbers of a is, in general, strictly
contained in the set of non trivial candidate jumping

numbers:
a+m
b;

@ Periodicity: If A > 2,
A is a jumping number < X — 1 is a jumping number.
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Jumping numbers

Objective 1

To compute the Poincaré series:
: ; J () A
Pa(t) == Z dimc ( T(a) ) t,

when a is a simple complete ideal of R and # is its set of
jumping numbers.

@ )\~ being the largest jumping number less than \.
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Jumping numbers

Expressions of the jumping numbers (i)

There exists a one to one correspondence among
@ Simple complete ideals a.

@ Plane divisorial valuations v of the fraction field of R
(centered at R).

@ Finite simple sequences of point blowing-ups:
X =Xp— Xp—1 — -+ — X1 — Spec(R)

(log resolution of a).
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Jumping numbers

Expressions of the jumping numbers (ii)

v: divisorial valuation defining a simple complete ideal a of R.

Ifa- Ox = Ox(—D): D= 27:1 b]EI = Zf:1 I/(gaj)Ej.

oj: General element for E; = element of R giving an equation of an
analytically irreducible germ of curve whose strict transform on X; is smooth
and intersects E; transversally at a non-singular point of the exceptional
locus.

Fi Foo  _  Fo  For1=En
E,=FE g+t
I
P

g: Number of Puiseux pairs; g*: Number of “star vertices”.
Maximal contact values:

Bk:l/(gpfk) k:0717"'7g1 Bng'l :V(g@n):U(G).
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Jumping numbers

Expressions of the jumping numbers (iii)

Jumping numbers

If a is a simple complete ideal, the set of jumping numbers of a is
H = UL H;, where

| I P I S R
Hi= {A(’,Pa q.r) = i1 " Bi " & | €1 " g~ e

whenever 1 < j < g*, and
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Jumping numbers

Expressions of the jumping numbers (iv)

Jumping humbers

p q
+ = p,q > 1},
€g+ 5g*+1 |

Heep1 = {A(g* +1,0,9) =

p, g and r being integer numbers and e; = gcd(fo, - . . , 5;).

T. Jarvilehto, Jumping numbers of a simple complete ideal in a
two-dimensional regular local ring. Mem. Amer. Math. Soc. 214 (2011). Also
(curve case): D. Naie (2009), K. Tucker (PhD. dissertation, 2010).
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Jumping numbers

Jumping numbers of a general curve of a

C : General curve of a, defined by ¢p.

J(AC) J (o)

He := {Jumping numbers of C}.
Q:={\€]1,2[ | Nisajn. ofaand \-1isnotajn.} C Hg- 1.

H=Hc\{1HU{AN+Kk|XeQ N keZso}.
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Contribution

The multiplier ideal preceding a given one

A := {E; | X is a candidate jumping number from E;}

m.0x(Kx)y — [AD]) = J(a*) & J(a*") = mOx(Kx/y — [AD] + > Ej)
EcA

{hGR‘I/Ei(h)ZAb,‘—a,‘ Vi}

{hER‘VEi(h)ZAb,‘—a,' VigA N l/Ei(h)Z)\b,'—a,'—1 VI‘EA}

For each E; € A:
J(a*) C mOx(Kx/y — [A\D] + Ej) C J(aM).

{heR\z/E,.(h)Z/\b;fa,- Vi#£j A l/Ej(h)Z/\bjfajfdu

Question: For which E; € A

J(a*) € mOx(Kx/y — [AD] + Ej) ?
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Contribution

Contribution of divisors to candidate jumping
numbers (i)

K.E. Smith, H.M. Thompson, Irrelevant exceptional divisors for curves on a
smooth surface, Contemp. Math., vol. 448 (2007).

Definition
Let A be a jumping number of a. E; contributes A whenever

@ )\ is a candidate jumping number from E; and
Q J(a*) € mOx(Kx)y — |AD] + E)).
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Contribution

Contribution of divisors to candidate jumping
numbers (ii)

Criterion of contribution:

@ Assume that X is a jumping number. Then E; contributes A
if and only if A is a candidate jumping number from E; and

—|AD] - E; > 2.

@ Moreover, if E; contributes some jumping number, then
E; = Fiforsomeic {1,...,9* +1}.

(K. Tucker (2008): Extension to surfaces with rational singularities).
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Contribution

Example

Let a € R = Cl[x, ¥](x,y) be the simple complete ideal
associated with a divisori_al valua_tion v cegtered atR V\@th
maximal contact values 5y = 6, 81 = 10, o = 45 and 33 = 92.

E4 Eiz Eis
l l

D = 6E{+10E,+18E3+30E4+32E5+34E5+36 E7+38Eg+40E9+
42E1 + 44E11 + 45E12 + 90E43 + 91E14 + 92E45 =
(6,10,18,30, 32,34, 36,38, 40,42,44,45,90,91,92).

Jumping number: \ = £3.

A€ HiNHo.

A is candidate j. n. for: E4 = Fy and Eq3 = F».
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Contribution

Example (ii)

Recall: E divisor with exceptional support, E is antinef whenever E - E; <0
for all j. We set E~ the antinef closure, i.e., the least antinef divisor > E.
7 Ox(—E) = m.Ox(—E™).
J(Cl)‘) = ﬂ'*OX(Kx/Y — L)\DJ)
[AD| — Kx,v = (3,5,9,16,16,17,17,18,18,19,19, 19, 39, 38, 38).
([AD] — Kx,v)~ = (4,6,11,18,19, 20, 20, 20, 20, 20, 20, 20, 40, 40, 40).
67

Previous jumping number: A\~ = &5.

J(@* ) = mO0x(Kx/y — |\ D]) = m.Ox(Kx;y — |[AD] + E4 + Ei3)).
IA"DJ] — Kx,y =(3,5,9,15,15,16,16,17,17,18,18,18,37, 36, 36).
(IA"D) — Kxv)™ = (3,5,9, 15,16, 17,18, 19,19, 19,19, 19,38, 38, 38).
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Contribution

Example (iii)

(IAD] — Kx,v)™ = (4,6,11,18,19, 20, 20, 20, 20, 20, 20, 20, 40, 40, 40).
(IA™D] — Kx,v)~ =(3,5,9,15,16,17,18,19,19,19,19,19, 38, 38, 38).
Does E, contribute \?

(IAD] — Kx,y — E4)™~ = (3,5,9,15,16,17,18,19, 20,20, 20, 20, 40, 40, 40).
Then J(a*) # m.Ox(Kx,y — [AD]| + E4) = E4 contributes .

But: J(a* ) # m.Ox(Kx/y — [AD] + Ea).

Does E;i3 contribute \?
(LAD] — Kx;y — E13)~ = (4,6,11,18,19,19,19,19,19,19,19, 19, 38, 38, 38).

Then J(a*) # m.Ox(Kx,y — [AD| + Ei3) = Eis contributes .

But: j(a)\i) # W*Ox(Kx/y — L/\DJ + E13).



Obijective 1
000000

Contribution

Determination of the divisors contributing a

jumping number

Theorem 1

A jumping number X of a simple complete ideal a belongs to the
set H; (1 <i < g*+1)if and only if the prime exceptional
divisor F; contributes .

| A\

Corollary

The prime exceptional divisors that contribute a jumping
number \ of a simple complete ideal a are those divisors F;
such that A € H;.

A\

Other independent proofs (curve case):
(D. Naie, 2009), (K. Tucker, PhD dissertation, 2010).
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The multiplier ideal preceding a given one

Example

Consider a as in the first example.

E4 Eiz Ess
Jumping number: X = {5 € Ha.
A is candidate j. n. for: {Ez, E4 = F1, Eg and Eq3 = Fz}.

The unique divisor contributing A is Ei3 = Fo.

- _ 61
AT = g50-

j(a/\i) = W*OX(KX/Y — |AD| + E> + E4 + Eg + Eq3).
But it can be checked that

J(@*) = m.Ox(Kx/y — [AD] + F2).
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The multiplier ideal preceding a given one

The multiplier ideal preceding a given one

Let A be a jumping number of a.

A := {E; | X is a candidate jumping number for E;}.

A" :={E; | Ej contributes \} = {F; | A € H;} C A.
J(a*") = m0x(Kx/y — IAD] + g en Ej).

Question:

Is it true that 7 (a* ) = mOx(Kx/y — [AD] + Y pcar Fi)?
In the affirmative case, one can “control” 7 (a*") from

@ J(a) and
@ the indices i such that \ € #;.
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The multiplier ideal preceding a given one

Answer

Theorem 2
Let A\ be a jumping number of a simple complete ideal a. Then

1O <Kx/y — |AD| + iF,-,) =J (ak) :

=1

where {iy, i, ...,is} is the set of indexes i, 1 < i < g* + 1, such
that A € H;.
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The Poincaré series

The Poincaré series

The Poincaré series Py(t) = 3", 4, dim < (a” )> t* has this

J(a*)
expression:

Z)\

AEQ

1 g
tz HZ —t)2

where

Q:i={\eHg 1| A<2and A —1¢&Hg 1}
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The Poincaré series

Key facts of the proof

Lemma

dim T ) _ iy TOx(Kxixo = ADI + 2aep, Fi) _
J(@) T (o) B
TI'*OX KX\X L)\D +F)
= ) dim : =) d
) A
AEH; J (@) AEH,
o}
Consequence:

de( )> = ng-(t)
) . / ’

AeH
where P;(t) := ", dit?.
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The Poincaré series

Computation of P(t) = >, ,, dit*

@ )\ € H;is a “primitive” element of H; if A — 1 & H;.
@ When 1 </ < g*: {Primitive elements of #,;} = H,;n]0, 1]
Hi={ \+n|XeHN0,1[and n € N}.

di = 1 whenever \ € #;1]0,1]

- .
Ifx € H;N]0,1[= d\,,=di Vn };diJ VA€ Hy.

@ Wheni=g*"+1:
{Primitive elements of Hg- 11} = Q
={AeHgp1|A<2and A -1 & Hg1}
Hgr1 ={A+n|AxecQandne N}

d{ = 1 whenever \ € Q
IfAxeQ=d,, ,=d\+nvn
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The Poincaré series

Computation of P(t) = >, ,, dit*

@ When1 <j < g*:

1 Z pBi+qei_1 +(s+e,-)(9"e;i15,
€i— 161

i

P,(t) _ Pi(zie/—16i) —

1= (pgs)eB
1 A
1—1t Z !
AEH; AT
@ Wheni=g*"+1:
€+ B+ 1 SBox 11+qegx
Pg-+1(t) = Pg=11( g*g‘+1g )= 5 Z Zg*fﬂ+1 ?

eg*Bg*+1
(1 =227 )2 (st

1—1‘)2ZfA

AEQ
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Antecedents

Objective 2: the log-canonical threshold

Log-canonical threshold: minimum jumping number.

Antecedents:

@ Analitically irreducible germ of curve (Igusa, 1977; Jarvilehto, 2007):
%+ 5
@ Product of two analitically irreducible germs of curve (Kuwata, 1999).
@ For a plane curve (any number of branches):

e There exist suitable local coordinates such that Ict is 1/t,
where (t, t) is the unique diagonal point of the Newton
polygon (Artal, Cassou-Nogués, Luengo, Melle-Hernandez,
2008).

o There exist suitable local coordinates such that Ict is the Ict
of the term ideal (Aprodu, Naie, 2010).

@ Irreducible quasi-ordinary hypersurface singularity (Budur,
Gonzéalez-Pérez, Gonzalez-Villa).

Our goal: expression of the Ict of a reduced plane curve (any
number of branches) in terms of maximal contact values.
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Antecedents

R = K[[x, y]]: Formal power series ring with coefficients over an
algebraically closed field k.

C: REDUCED curve defined by f = f; - - - f, f; € R irreducible.
C;: curve defined by f;.
Log resolution of a := (f) C R (composition of blow-ups):

7 X =Xm =5 Xy — -+ — X7 = Y = Spec(R).
Set of centers (constellation): C := {P;}]",.
a-Ox =Ox(-DYwithD=Cy+---+ Cr + byE + - - - + bEnm.

J(a*) = m.Ox(Kxy — [AD]) =
={he R|vg(h) = [\bj] —a; Vi and vy (h) = [A]}

a+1
:>1ct(C):1r<nji<rwm{&j:: jb+j }
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Important Vertices

Important vertices (1)

@ Suppose that

C17027"'7Cnacn+1acn+27"'7cf'

Singular Smooth

@ C;:={PjcC| Cpassesthrough P}, 1<i<r.

@ Terminal satellite point for h € R: satellite point P; € C such
that {Px € C \ {P;} s.t. the strict transform of H on Xy
passes through Py and Py 2 P;} is either empty or its

minimum (with respect to the ordering “infinitely near” =) is
a free point.
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Important Vertices

Important vertices (2)

T:{P;,|i:1,...,n},

where P; := Minimum terminal satellite pointof C;, 1 <i<n.

F:={P,eC|Pyz Pforsome P, € T} UCpy1---UCr.
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Important Vertices

Example: f = fi f f3 f4 f5 fg f; fg (proximity graph)

C1 ={P1,P>,Ps, P4, Ps, Ps, Pr}.

Co = {P1, P2, Ps, Ps, Ps, Ps}.

Cs = {P1, P2, Ps, P4, Py, Pyo, P11}.

Cs = {P1, P2, P3, P4, Py, Pyo, P12, Pi3}.
CS = {P1,P2,P16,P17}.

Ce = C7 = {P17 Pz, Pa,P4,P14, P15}-
Cs = {P1, P2, Pis}.

T ={Py = P;,P, = Ps, P;; = P11,

Pi, = P13, Py = Pi7}.
F=C.
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Important Vertices

Example: f=fbhifkfkif (dual graph)

C1 = {P1, P2, P3, Py, Ps, Ps, Pr}.
CZ:{P17P27P37P47P57P8}-

Cs = {P1, P2, Ps, P4, Py, Pio, P11}.

Cs = { Py, P2, P3, P4, Py, Pio, P12, Pi3}.
Cs = {P1, P2, Psg, P17}.

Ce = C7 = {P1, P2, P3, Pa, P14, Pis}.
Ce = {P1, P2, Pis}.

T ={Py = P, P, = Ps, P;; = P11,

Py, = P13, Py = Pi7}.

F=C.
Square: satellite point not in 7. Star:
satellite point in 7.
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Important Vertices

Important vertices (3). Initial separating points

Set of initial separating points, S:
Points P; € C such that two
components C;, and C;, of C are freely
separated at P;. That is:

@ maxx(Cy, NC,) = P;. (Separated
at ).

@ (fy | f,) = (0, ¢) -no common
satellite points and ¢ free ones- for
some ¢ < min{ly, |2}. (Freely
Separated at P).

I§ (J): free points P; through which the strict transform of H pass (and all
satellite points P, satisfy P > P;) if H is not (is) singular.

S = {P2, P4, Pi5}.

Vr ={vP €T}, Vs:={vjF €S}
Y =V5+UVs.
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Left and right accessibility

In the dual graph:

< denote the order induced by
I'(C). v;, <vj, means that v,
belongs to [v1,Vv;,]. By convention,
if a; is an arrow that is a label of v;,
then v, <a; willmeanv;, <v,.

vio={ai|v; £ aj},

vi={aj|v;<aj}.

o Vr(:={Vvj|P; € F)} — Z given by

o(v)) = Z Giffo — Z Bo,

ev< >
alev/' a,'EV]f

. { card ([vi,a;] N [V1, V] N Viee) i ter([vy,a]N[vy,v]) €8
ji -= i 3

B /B otherwise.

Obijective 2
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Our result

Theorem (l)

Let C be s above. Then:
@ (1) There exists a vertex v, € V satisfying the conditions:
(a) o(vj) <Oforallv; e [vi,vg] NV and
(b) o(vj)>0forallv; e V\ [vq, V]
@ (2) The log-canonical threshold of C is the value @, above
defined and it can be computed as follows:



Our result

Theorem (ll)

@ If vy =v; € Vr, then

____ By+s
ak—ati—ﬁ7
s=1"vIs

where

5.— { BoBt  ifeithers =i ors#iand 3y = B
7 I(fi,fs) otherwise.

B
@ If v € Vs, then
_— Bg B¢ + I(fy. 1)
5(1)1 /(fi1 ) flz) + B(’)2 Z1§s§r, S#i /(fi1 ) fS)

where C;, and C;, are any two components which are
freely separated at Px.

Obijective 2
(o] J

S /(fh fS]
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Our result

Example (i)

{50751} ={5,17}
{50751}:{3711}
{507ﬁ1} = {27117}
{60751} = {2, 13}
{ﬁ0751}: {275}

18, a
V = VsUVr = {V2,Va,V7, Vg, V11, V13, Vs, Va7 }. H/‘_A{ |
17
.
8
ol
o(Vvo) == fFoy=-17. /
i=1

o(v1) = 25528~ BB R - B =
o(ve) = 2552+ 51~ B R -F-Fo~7 = 14.
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Our result

Example (ii). Log-canonical threshold

Then, vy is the distinguished vertex v, and

21, 7t
let(C) =a7 =ay, = == 61:% =
BiBy + 2 sz I(fr, fs)
B 1745
T17.5417.3+417-2417-242-.5-2417-1+17-142-5-1

_ 1
~ 134
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Two-branches case

Corollary: the case of 2 branches

Assume that the number of components of C is r = 2 and, without loss of
generality, that 5] /B4 < B2/B2. Then:
(a) If Cy and C; are not freely separated, it holds that

Bl+8} it Als 72

1et(C) = { G5 11 2
32432 -

RET7) otherwise.

(b) If, on the contrary, C; and C; are freely separated,

ByBE+IAR) i 1 < B <
(B +7R)ICh ) i eSS c
. B1+Bg i« Bo 1
(C)=1 zamm & <o
B3+B2 ;
otherwise,

BEB2+I(f )

¢ being the integer such that (f; | £2) = (0, ¢).
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Complete Ideal

Lct of a complete ideal

Let a be a complete ideal of finite co-length in R (local regular
and bidimensional). a has a unique factorization a = p{" - - - p;"
as a product of simple complete ideals. Then,

Ict(a) = lct(zr: D;)
i=1

where, foreach i =1,...,r, D; is a sum of n; suitable chosen
general curves of the ideal p;.

Suitable chosen means that the curves meet the corresponding
divisor at different points.
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THANK YOU FOR YOUR ATTENTION ]

ORGANIZERS: THANK YOU VERY MUCH J
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