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Gröbner basis

2 BINARY CODES
Gröbner representation
Computing coset leaders
Gradient Descent Decoding

3 MODULAR CODES
Relationship to integer linear programming
Minimal support codewords
How to reduce the complexity?

4 LINEAR CODES
Applications to other classes of codes

5 A SEMIGROUP APPROACH
The semigroup associated with a modular code
The semigroup associated with a linear code
Conclusions

6 APPLICATIONS



A SEMIGROUP APPROACH TO
COMPLETE DECODING
LINEAR AND MODULAR

CODES

INTRODUCTION

LINEAR CODES
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INTRODUCTION TO CODING THEORY

Claude Shannon
(1916-2001)

A Mathematical Theory of Communication
(Claude Shannon, 1948)

Information Theory

Coding Theory

Message
source Encoder Channel Decoder Receiver

m = m1 · · ·mk
message

Enc. function
E : Fk

q → Fn
q

Noisy

e = e1 · · · en
error from noisy

Dec. function
D : Fn

q → Fk
q

y = E(m) + e
received vector

D(y)

FIGURE: Block diagram of a communication system
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INTRODUCTION TO LINEAR CODES

C
[n, k ] linear code

over Fq

k -dimensional subspace of Fn
q

Generator Matrix: G ∈ Fk×n
q

whose rows form a basis of C

Parity-check matrix: H ∈ F(n−k)×n
q

whose nullspace is generated by the
codewords of C

Hamming distance of x, y ∈ Fn
q is

dH(x, y) = | {i | xi 6= yi} |

Hamming weight of x ∈ Fn
q

is wH(x) = | {i | xi 6= 0} |

Minimum distance of C:

d(C) = min
c1c2∈C
c1 6=c2

{dH(c1, c2)} = min
c∈C
c6=0

{wH(c)}

Ideal associated to C

I(C) =
〈{

Xa − Xb | a− b ∈ C
}〉
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THE GENERAL DECODING PROBLEM

ÜOur goal: D (E(m) + noise) = m

MAXIMUM LIKELIHOOD DECODING (MLD)

Given a received word y ∈ Fn
q , find x that maximizes the probability:

P (y received /x sent)

On symmetric channel MLD Ü Minimum Distance Decoding (MDD)
Output the closest codeword in Hamming distance to the received word.

Find a unique codeword that
minimizes the Hamming distance to

the received vector.

Unique Decoder

Find all codewords nearest to
the received vector.

Complete Decoder

COMPLETE MINIMUM DISTANCE DECODING

Given a received vector y ∈ Fn
q find one of the closest codewords in C.
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THE GENERAL DECODING PROBLEM

FIRST IDEA: BRUTE FORCE

Compute the Hamming distance of the received word with all codewords.
Ü The complexity is O

(
nqk
)

Ü Known complete decoding methods with complexity asymptotically less than
that of exhaustive search can be divided mainly into three groups:

1 Syndrome Decoding

2 Gradient Descent Decoding

3 Information Set Decoding
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SYNDROME DECODING Let C be an [n, k ] code in Fq .

Let x ∈ Fn
q , the set x + C is called a coset of C.

Ü Two vectors x and y belong to the same coset⇐⇒ y− x ∈ C.

Ü The cosets form a partition of the space Fn
q into qn−k classes each

containing qk elements.

The words of minimal Hamming weight in the cosets of Fn
q/C are the set of

coset leaders for C.

Ü CL(C): Set of coset leaders of C.

Ü CL(y): Subset of coset leaders corresponding to the coset C + y.

Choose a parity check matrix H for C. The Syndrome of a vector x ∈ Fn
2 is

the vector
S(x) = HxT ∈ Fn−k

q

Ü The syndrome of a codeword is 0.

Ü Two vectors that differ by a codeword have the same syndrome, i.e.

HyT = H(c + e)T = 0 + HeT

THEOREM:

Two vectors belong to the same coset⇐⇒ They have the same syndrome.
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SYNDROME DECODING Let C be an [n, k ] code in Fq .

CLASSICAL SYNDROME DECODING

1 Construct the syndrome lookup table.

i.e. enumerate the cosets of C in Fn
q , choose a coset leader for each coset and

compute its syndrome.

2 If y is the received word⇒ Determine from the table which coset leader e
satisfies that S(y) = S(e).

3 Decode y as y− e ∈ C.

The precomputation of this method grows exponentially with the length of
the code ∼ O

(
nqn−k

)
.
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EJEMPLO DE DESCODIFICACIÓN POR S ÍNDROME I

Ü La siguiente matriz

G =

 1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 ∈ F3×6
2

genera un código de parámetros [n = 6, k = 3, d = 3].

Ü Un ejemplo de palabra del código es:

(0, 1, 1) · G = (0, 1, 1, 0, 1, 1)

.

Ü Una matriz de paridad del código es:

H =

 1 0 1 0 1 0
0 1 1 0 1 1
0 0 0 1 1 1

 ∈ F3×6
2

Observamos que G · HT = 0.

Ü Este código detecta d − 1 = 2 errores y puede corregir
⌊

d−1
2

⌋
= 1 error.
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EJEMPLO DE DESCODIFICACIÓN POR S ÍNDROME II

Syndrome Coset Leader
000 0
001 e6
010 e5
011 e1
100 e4
101 e2
110 e3
111 e1 + e4, e2 + e5, e3 + e6

TABLE: Tabla de Sı́ndromes para C

Ü Recibimos el vector
y = (1, 1, 0, 1, 0, 0) ∈ F6

2.

Calculamos su sı́ndrome
S(y) = HyT = 010.

Descodificamos y por
y− e5 = (1, 1, 0, 1, 1, 0).

Ü Recibimos el vector y = (1, 0, 0, 1, 0, 0) ∈ F6
2.

Calculamos su sı́ndrome S(y) = HyT = 111.

La clase de equivalencia de y tiene 3 coset leaders. Existen por lo tanto tres
posibles soluciones:

1 y + e1 + e4 = 0,
2 y + e2 + e5 = (1, 1, 0, 1, 1, 0)
3 y + e3 + e6 = (1, 0, 1, 1, 0, 1)
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GRADIENT DESCENT DECODING Let C be an [n, k ] code in Fq .

TEST-SET

A Test-set for C is a subset TC ⊂ C such that foe every vector y ∈ Fn
q either

y ∈ CL(C) or there exists t ∈ TC such that wH (y− t) < wH (y).

GENERAL PRINCIPLE

1 Precomputed and stored in memory a Test-set TC for C in advance.

2 Recursively inspect the Test-set TC for the existence of an adequate element
which is subtracted from the current vector.

The complexity is O (n|TC|).
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INTRODUCTION TO GRÖBNER BASIS

K[x] = polynomial ring in n variables over the field K

[X ] = set of monomials of K[x] =
{

xa = xa1
1 xa2

2 · · · x
an
n : a ∈ Zn

≥0

}
A term order on K[x] is a total well-ordering � on [X ] such that:

xa � xb ⇒ xa+c � xb+c for all a, b, c ∈ Zn
≥0.

Example: degree lexicographic order (deglex)

xa �deglex xb ⇐⇒ deg(xa) > deg(xb) or deg(xa) = deg(xb) and a �lex b

Leading term of f (x) ∈ K[x] w.r.t. ≺ = LT≺(f) .

Let I be an ideal in K[x], the initial ideal is in≺(I) = 〈LT≺(f ) : f ∈ I〉.

GRÖBNER BASIS

A finite subset G of I is a Gröbner basis w.r.t the term order � if

in�(I) = 〈LT�(g) : g ∈ G〉 .

THEOREM

If � is fixed, then every ideal I ⊆ K[x] has a unique reduced Gröbner basis.

The reduced Gröbner basis G can be computed from any generating set of I by a
method introduced by Bruno Buchberger in 1965.
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GRÖBNER REPRESENTATION

COMPUTING COSET LEADERS

GRADIENT DESCENT DECODING

MODULAR CODES

RELATIONSHIP TO INTEGER LINEAR

PROGRAMMING

MINIMAL SUPPORT CODEWORDS

HOW TO REDUCE THE

COMPLEXITY?

LINEAR CODES

APPLICATIONS TO OTHER CLASSES

OF CODES

A SEMIGROUP APPROACH

THE SEMIGROUP ASSOCIATED WITH

A MODULAR CODE

THE SEMIGROUP ASSOCIATED WITH

A LINEAR CODE

CONCLUSIONS

APPLICATIONS

BINARY CODES

2 BINARY CODES
Gröbner representation
Computing coset leaders
Gradient Descent Decoding

Ü Throughout this section C will be a binary linear code of length n and
dimension k , i.e. a k -dimensional linear subspace of Fn

2.

Ü This section essentially follows:

M. Borges-Quintana, M.A. Borges-Trenard, I. Márquez-Corbella and E. Martı́nez-Moro,
An Algebraic view to gradient descent decoding,
In Information Theory Workshop (ITW), 2010, pages 1-4.

M. Borges-Quintana, M.A. Borges-Trenard, I. Márquez-Corbella and E. Martı́nez-Moro,
Computing coset leaders and leader codewords of binary codes,
Submitted, 2012.

Ü Both are joint works:

M. Borges-Quintana (University of Oriente - Santiago de Cuba).
M.A. Borges-Trenard (University of Oriente - Santiago de Cuba).
E. Martı́nez-Moro (University of Valladolid - Spain).
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BINARY CODES

Ü Let C be an [n, k ] binary code.

Characteristic crossing functions:

H : Zs −→ Zs
2 and N : Zs

2 −→ Zs .
The map H is reduction modulo 2.

The map N replaces the class of 0, 1 by the same symbols regarded as integers.

THEOREM [BORGES-BORGES-FITZPATRICK-MARTÍNEZ (2008)]

Let {w1, . . . ,wk} label the rows of a generator matrix for C.

I(C) =

〈 {
XNwi − 1

}
i=1,...,k

⋃ {
x2

j − 1
}

j=1,...,n

〉

THEOREM [BORGES-BORGES-FITZPATRICK-MARTÍNEZ (2008)]

Any reduced Gröbner basis G of I(C) relative to a degree compatible ordering
induce a test-set for C.

COROLLARY

Red(Xa,G) = Xe provides a coset leader even if wH (e) ≥ t
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GRÖBNER REPRESENTATION OF BINARY CODES

Let {ei | i ∈ {1, . . . , n}} be a canonical basis of Fn
2.

GRÖBNER REPRESENTATION

A Gröbner representation of an [n, k ] binary linear code C is a pair (N , φ) where:

N is transversal of the cosets in Fn
2/C verifying that:

Ü 0 ∈ N
Ü n ∈ N \ {0} =⇒ ∃i ∈ {1, . . . , n} : n = n′ + ei with n′ ∈ N

φ : N × {ei}n
i=1 −→ N

Ü that maps each pair (n, ei ) to the element ofN representing the coset of n + ei .

Some references on Gröbner representation of codes and its implementations:

M. Borges-Quintana, M.A. Borges-Trenard,

P. Fitzpatrick and E. Martı́nez-Moro,

Gröbner bases and combinatorics for binary
codes,

Appl. Algebra Engrg. Comm. Comput. Volume 19,
no.5, 393–411, 2008.

M. Borges-Quintana, M.A. Borges-Trenard and E.

Martı́nez-Moro,

A Gröbner bases structure associated to linear
codes,

J. Discrete Math. Sci. Cryptogr. Volume 10, no.2,
151–191, 2007.

M. Borges-Quintana, M. A. Borges-Trenard and

E. Martı́nez-Moro.

A general framework for applying FGLM
techniques to linear codes.

Lectures Notes in Comput. Sci., AAECC 16,
volume 3857, 76-86, 2006.

M. Borges-Quintana, M. A. Borges-Trenard and

E. Martı́nez-Moro.

GBLA-LC: Gröbner bases by Linear Algebra and
Linear Codes.

ICM 2006. Mathematical Software, EMS,
604-605, 2006.
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GRÖBNER REPRESENTATION OF BINARY CODES

EXAMPLE 1

Let C be a [6, 3, 3] binary code with generator matrix G and parity check matrix H
given by:

G =

 1 0 0 1 1 1
0 1 0 0 1 1
0 0 1 1 0 1

 and H =

 1 0 0 1 1 1
0 1 0 1 0 1
0 0 1 0 1 1

 .

Ü Binomial ideal associated to C:

I2(C) =

〈
{x1x4x5x6 − 1, x2x5x6 − 1, x3x4x6 − 1} ∪

{
x2

i − 1
}

i=1,...,6

〉
Ü The reduced Gröbner basis of I2(C)w.r.t. degrevlex order with x1 < . . . < x6:

x6x5 − x3, x6x4 − x2, x6x3 − x5, x6x2 − x4,
x5x4 − x6x1, x5x3 − x6, x5x2 − x1, x5x1 − x2,
x4x3 − x1, x4x2 − x6, x4x1 − x3,
x3x2 − x6x1, x3x1 − x4,
x2x1 − x5

 ∪
{

x2
i − 1

}
i=1,...,6

Ü which correspond to: N =
{

0, e1, e2, e3, e4, e5, e6, e1 + e6
}

[0, [2, 3, 4, 5, 6, 7]] , [e1, [1, 5, 6, 3, 4, 8]] , [e2, [5, 1, 8, 2, 7, 6]] ,
[e3, [6, 8, 1, 7, 2, 5]] , [e4, [3, 2, 7, 1, 2, 5]] , [e5, [4, 7, 2, 8, 1, 3]] ,
[e6, [8, 6, 5, 4, 3, 1]] , [e1 + e6, [7, 4, 3, 6, 5, 2]]
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COMPUTING COSET LEADERS

Algorithm 2.1: Algorithm for computing all the coset leader of a binary code C

Data: A weight compatible ordering≺ and a parity check matrix H of a binary code C.
Result: The set of coset leaders CL(C) and (N , φ) a Gröbner representation for C.
List←− [0];N ←− ∅; r ←− 0; CL(C)←− ∅; S ←− ∅;1

while List 6= ∅ do2

t←− NextTerm[List]; s←− tHT ;3

j ←− Member[s,S];4

if j 6= false then5

for k ∈ supp(t) : t = t′ + ek with t′ ∈ N do6

φ(t′, ek )←− tj7

if wH (t) = wH (tj ) then8

CL(C)[tj ]←− CLC[tj ] ∪ {t};9

List←− InsertNext[t, List];10

else11

r ←− r + 1; tr ←− t;N ←− N ∪ {tr};12

CL(C)[tr ]←− {tr}; S ←− S ∪ {s};13

List = InsertNext[tr , List];14

for k ∈ supp(tr ) : tr = t′ + ek with t′ ∈ N do15

φ(t′, ek )←− tr ;16

φ(tr , ek )←− t′;17

Ü Complexity: n|CL(C)| ⇒ has near-optimal performance.
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COMPUTING COSET LEADERS Continuing with Example 1

Ü Using algorithm 2.1, we obtain the following list of coset leaders:

Coset Leaders CL(C)
CL(C)0 [0]
CL(C)1 [e1], [e2], [e3], [e4], [e5], [e6]
CL(C)2 [e1 + e6, e2 + e3, e4 + e5]

TABLE: List of coset leaders in Example 1

Ü The algorithm could be adapted without incrementing the complexity to obtain
the following additional information:

Newton radius (ν(C)):
Largest weight of any vector that can be uniquely corrected.
Covering radius (ρ(C)):
Smallest integer s such that Fn

q is the union of the spheres of radius s
centered at the codewords of C.
Weight Distribution of the Coset leaders (WDCL):
List (α0, . . . , αn) where alphai is the number of cosets with weight i .
Number of coset leaders in each coset.

Ü In our example: ν(C) = 1, ρ(C) = 2, WDCL =
[

1, 6, 1, 0, 0, 0
]

and

] (CL) =

 1,
1, 1, 1, 1, 1, 1
3

 .
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GRADIENT DESCENT DECODING (GDD)

CLASSICAL SYNDROME DECODING

1 Construct the syndrome lookup table.

i.e. enumerate the cosets of C in Fn
q , choose a coset leader for each coset and

compute its syndrome.

2 If y is the received word⇒ Determine from the table which coset leader e
satisfies that S(y) = S(e).

3 Decode y as y− e ∈ C.

The precomputation of this method grows exponentially with the length of
the code.

Ü Main advantage of GDD: this task is broken into smaller steps.

Ü In the literature there are two GDD for binary codes proposed independently by
Liebler and Ashikmin and Barg.

Ü Both algorithms can be seen as two ways of understanding the reduction
associated to the Gröbner representation of the code!!!
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LIEBLER’S GRADIENT DESCENT DECODING

Algorithm 2.2: l-GDDA

Data: y ∈ Fn
2 the received word.

Result: A codeword c ∈ C that is closest to y.
while wH (y) 6= 0 do1

Compute y′ ∈ Fr
2 such that2

dH (y, y′) = 1 and wH (y) ≥ wH (y′);
y := y′;3

end4

return c = y;5

See:

R. Liebler.

Implementing gradient
descent decoding.

Michigan Math. J., volume 58,
Issue 1, 285-291, 2009.

SOME REMARKS:

Ü In each step of the Algorithm 2.2 the vector y changes between different cosets
of Fn

2/RC until it arrives to the 0 coset, i.e. y ∈ C.

Ü This is essentially the syndrome decoding algorithm broken up in smaller
steps.
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GRÖBNER REPRESENTATION

COMPUTING COSET LEADERS

GRADIENT DESCENT DECODING

MODULAR CODES

RELATIONSHIP TO INTEGER LINEAR

PROGRAMMING

MINIMAL SUPPORT CODEWORDS

HOW TO REDUCE THE

COMPLEXITY?

LINEAR CODES

APPLICATIONS TO OTHER CLASSES

OF CODES

A SEMIGROUP APPROACH

THE SEMIGROUP ASSOCIATED WITH

A MODULAR CODE

THE SEMIGROUP ASSOCIATED WITH

A LINEAR CODE

CONCLUSIONS

APPLICATIONS

LIEBLER’S GRADIENT DESCENT DECODING VS.
GRÖBNER REPRESENTATION

We define the reduction of an element n ∈ N relative to ei as the element
n′ = φ(n, ei ) ∈ N , denoted by n→i n′.

Ü For each y ∈ Fn
2, y = 0 +

∑
j eij for some ij ∈ {1, . . . , n}

Ü Thus we can iterate a
finite number of
reductions to find the
closest codeword.

Ü This gives us the
following GDDA:

Ü See resemblance with
Liebler’s Algorithm.

Algorithm 2.3: (N , φ)- reduction

Data: (N , φ) a Gröbner representation for C
w.r.t. a total degree ordering and the
received word y ∈ Fn

2.
Result: A codeword c ∈ C that minimized

the Hamming distance dH (c, y).
y =

∑s
j=1 eij i.e. supp(y) = {i1, . . . , is}

Forward Step: // Compute n ∈ N
corresponding to the coset y + C, i.e.

n ∈ CL(y)

n←− 0
for j ← 1 to s do

n −→ij n′ // i.e. n′ = φ(n, eij )

n←− n′

Backward Step:
while n 6= 0 do

Find i ∈ {1, . . . , n} such that
wH (n) > wH (φ(n, ei ))
y←− y + ei
n←− φ(n, ei )

Return c = y
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ASHIKMIN-BARG’S GRADIENT DESCENT DECODING

Algorithm 2.4: ts-GDDA

Data: y ∈ Fn
2 the received word and a Test

Set T for C.
Result: A codeword c ∈ C that is closest to y.
c := 0;1

while no t ∈ T is found such that2

wH (y− t) < wH (y) do
c := c + t;3

y := y− t;4

end5

return c;6

See:

A. Ashikhmin and A. Barg.

Minimal vectors in linear
codes.

IEEE Trans. Inform.Theory,
volume 44, 2010-2017, 1998.

SOME REMARKS:

This algorithm stays entirely in one coset of the code until it arrive to a coset
leader.

If T =MC the algorithm 2.4 performs Complete Minimum Distance Decoding.
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ASHIKMIN-BARG’S GRADIENT DESCENT DECODING VS.
GRÖBNER REPRESENTATION I

Ü Associated to the Gröbner representation (N , φ) for the binary code C we can
define the border of a code:

B(C) =

{
(n + ei , φ(n, ei ))

∣∣∣∣ n + ei 6= φ(n, ei ), n ∈ N
and i ∈ {1, . . . , n}

}
Ü Let b = (b1, b2) ∈ B(C) we define:

head(b) = b1 ∈ Fn
2 and tail(b) = b2 ∈ Fn

2

Ü head(b) + tail(b) ∈ C.

Ü The information in the border is somehow redundant, we can reduce the
number of codewords in it by defining the following structure.

REDUCED BORDER OF A CODE

Let ≺ be a term ordering. A subset R(C) ⊆ B(C) is called the reduced border of the
code C w.r.t. ≺ if it fulfills the following conditions:

For each element in the border b ∈ B(C) there exists an element h in R(C)
such that supp (head(h)) ⊆ supp (head(b)).

For every two different elements h1 and h2 in R(C) neither
supp(head(h1)) ⊆ supp (head(h2)) nor supp(head(h2)) ⊆ supp (head(h1)) is
verified.
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ASHIKMIN-BARG’S GRADIENT DESCENT DECODING VS.
GRÖBNER REPRESENTATION II

PROPOSITION:

Let us consider the set of codewords in C given by

MRed≺ (C) = {head(b) + tail(b) | b ∈ R(C)}

Then MRed≺ (C) corresponds to a subset of codewords of minimal support of C,MC .

Ü ThusR(C) is a minimal test-set that allow Ashikmin-Barg’s GDD.
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GRÖBNER BASIS

BINARY CODES
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MODULAR CODES

3 MODULAR CODES
Relationship to integer linear programming
Minimal support codewords
How to reduce the complexity?

Ü Throughout this section C will be a modular code of length n defined over Zq ,

i.e. a submodule of
(
Zn

q ,+
)

.

Ü The result of this section are joint work with E. Martı́nez-Moro from University of
Valladolid (Spain) and appeared in:

I. Márquez-Corbella and E. Martı́nez-Moro,

Algebraic structure of the minimal support codewords set of some linear codes,
Adv. Math. Commun. 5(2):233-244, 2011.

I. Márquez-Corbella and E. Martı́nez-Moro,

Decomposition of Modular Codes for Computing Test Sets and Graver Basis,
Mathematics in Computer Science, 6:147-165, 2012.
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THE IDEAL ASSOCIATED WITH A MODULAR CODE

Ü Let C be an [n, k ] modular code over Zm .

Characteristic crossing functions:

H : Zs −→ Zs
m and N : Zs

m −→ Zs .
The map H is reduction modulo m.

The map N replaces the class of 0, 1, . . . ,m − 1 by the same symbols regarded as integers.

THEOREM:[MÁRQUEZ-MARTÍNEZ (2011)]

Given a generator matrix G ∈ Zk×n
q of C and let label its rows by

{w1, . . . ,wk} ⊆ Zn
q . The following ideal match the ideal I(C):

Im(C) =
〈 {

Xwj − 1
}

j=1,...,k ∪
{

xq
i − 1

}
i=1,...,n

〉
⊆ K[X]
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RELATIONSHIP TO INTEGER LINEAR PROGRAMMING

Let A ∈ Zm×n
q , b ∈ Zm

q and w ∈ Rn , we define

IPA,w,q (b) =


Minimize w · Nu

subject to

{
Aut ≡ b mod q
u ∈ Zn

q

Modular Integer Program Problem

Let C be a linear [n, k ] code. Given a re-
ceived word y ∈ Fn

q MDD is to find a
codeword x ∈ C that minimizes the Ham-
ming distance dH (x, y).

Minimum Distance Decoding (MDD)

6= except for the binary case

A test-set for IPA,w,q (b) is a subset T�w ⊆ kerZq (A)

such that for each non-optimal solution u there exists
t ∈ T�w such that u − t is also a solution and t �w 0.

Test-Set
A test-set for the code C is a subset

T ⊆ C

such that for every vector y ∈ Fn
q

either y ∈ C or there exists a t ∈ T
such that wH (y − t) < wH (y)

Test-Set

We can define the ideal associated to IPA,w,q (b) as

I(A⊥) =

〈{
x
Nwj − 1

}k
j=1
∪
{

xq
i − 1

}q
i=1

〉

where {w1, . . . , wk} ⊆ Zn
q is a set of Zq -generators of

the row space of the matrix A ∈ Zm×n
q .

A reduced Gröbner basis of I(A⊥) induced a test-set for IPA,w,q (b)

6= except for the binary case

Universal Test-Set for IPH,q(b)⊇ Codewords of minimal

support of C

A Graver basis of I(H⊥ )
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GRAVER BASIS B. STURMFELS,
Gröbner bases bases and Convex Polytopes

Ü The ideal associated to the Z-kernel of the matrix A ∈ Zm×n is:

IA = 〈{xu+
− xu− | u ∈ kerZ(A)}〉.

UA = Universal Gröbner basis of IA.

Ü A binomial xu+
− xu− in IA is called primitive if there exists no other binomial

xv+
− xv− in IA such that xv+

divides xu+
or xv− divides xu− .

GrA= Graver basis of IA= set of primitive binomials of IA.

PROPOSITION

UA ⊆ GrA
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GRÖBNER REPRESENTATION

COMPUTING COSET LEADERS

GRADIENT DESCENT DECODING

MODULAR CODES

RELATIONSHIP TO INTEGER LINEAR

PROGRAMMING

MINIMAL SUPPORT CODEWORDS

HOW TO REDUCE THE

COMPLEXITY?

LINEAR CODES

APPLICATIONS TO OTHER CLASSES

OF CODES

A SEMIGROUP APPROACH

THE SEMIGROUP ASSOCIATED WITH

A MODULAR CODE

THE SEMIGROUP ASSOCIATED WITH

A LINEAR CODE

CONCLUSIONS

APPLICATIONS

HOW TO COMPUTE A GRAVER BASIS

LAWRENCE LIFTING

The Lawrence lifting of the integer matrix A ∈ Zm×n is the enlarge matrix

Λ(A) =

(
A 0
1 1

)
∈ Z(m+n)×2n

Where 1 ∈ Zn×n is the identity matrix and 0 ∈ Zm×n is the zero matrix.

ä ker(Λ(A)) = {(u,−u) | u ∈ ker(A)}.

ä IΛ(A) =
〈

xu+
yu− − xu−yu+

| u ∈ ker(A)
〉
⊆ K[x1, . . . , xn, y1, . . . , yn].

THEOREM (STURMFELS)

For a Lawrence type matrix Λ(A) ∈ Z(m+n)×n the following sets of binomials coincide:

GrΛ(A) = UΛ(A) = G,

where G is any reduced Gröbner basis of the ideal IΛ(A).

Algorithm 3.1: Algorithm for computing the Graver basis of IA

Data: An integer matrix A ∈ Zm×n.
Result: The Graver basis of IA, GrA.
We choose any term order on K[x, y];1

We defined the Lawrence lifting of the matrix A := Λ(A);2

We compute a reduced Gröbner basis of IΛ(A);3

We substitute the variable y by 1;4
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MINIMAL SUPPORT CODEWORDS

MINIMAL SUPPORT CODEWORD

A nonzero codeword m in C is a minimal support codeword if there is no other
codeword c ∈ C such that

supp(c) ⊆ supp(m).

Ü We denote byMC the set of codewords of minimal support of C.

THEOREM [MÁRQUEZ-MARTÍNEZ 2011]

Choose a parity check matrix H ∈ Z(n−k)×n
q for C.

Ü MC is a subset of the Graver basis of H.

COROLLARY

MC can be computed from any Gröbner basis of the ideal〈{
xNw1 zNw1(q−1) − 1, . . . , xNwk zNwk (q−1) − 1

}
∪
{

xq
i − 1

}n
i=1 ∪

{
zq

i − 1
}n

i=1

〉
where {w1, . . . ,wk} ⊆ Zn

q are the rows of a generator matrix of C.

I. Márquez-Corbella and E. Martı́nez-Moro,

Algebraic Structure of the minimal support codewords set of some linear codes,

Advances in Mathematics of Communications, volume 5, No. 2, 233-244, 2011.
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HOW TO REDUCE THE COMPLEXITY? I

1 FGLM technique to compute a Gröbner basis

We know a set of generators of the ideal I(C) :

I(C) =
〈 {

XNwi − 1
}

i=1,...,k

⋃ ∣∣{X q
i − 1

}n
i=1

〉
where {w1, . . . ,wk} ⊆ Zn

q are rows of a generator matrix of C.
Ü In order to compute a Gröbner basis of I(C) we can use FGLM-techniques.

M. Borges-Quintana, M.A. Borges-Trenard, P. Fitzpatrick and E. Martı́nez-Moro,

Gröbner bases and combinatorics for binary codes,
Appl. Algebra Engrg. Comm. Comput. Volume 19, no.5, 393–411, 2008.

This procedure is completely general and it has the following advantages:
ä The problem of growth of the total degree do not have to be considered since

the total degree of the binomials involved is bounded by n × q.
ä The problem of coefficient growth do not have to be considered since we can

take as base field K = F2.
ä All the steps can be carried out as Gaussian elimination steps.
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HOW TO REDUCE THE COMPLEXITY? II

2 Decomposition of modular codes

We can reduce the complexity by using the decomposition of a given code
as “gluing” of smaller ones.

1 (Decomposition) Find a decomposition of an [n, k ]-code C into the
m-gluing of two (or more) smaller codes, denoted by {Cα}α∈A.

2 ComputeMCα the set of codewords of minimal support of Cα for each
α ∈ A.

3 (Gluing) ComputeMC from {MCα}α∈A.

Our aim is to explicitly define a procedure that:

Ü Parallel computing is well suited for Step 2.
Ü A similar process can be defined to compute the Gröbner test-set for a

binary code.
The concept of ”glue” was already used by other authors:

J.C. Rosales,

On presentations of subsemigroups of Nn ,
Semigroup Forum, 55(2):152-159, 1997.

A. Thoma,

Construction of set theoretic complete intersection
via semigroup gluing,
Beiträge Algebra Geom., 41(1):195-198, 2000.

J.I. Garcı́a-Garcı́a, M.A. Moreno-Frı́as and A. Vigneron-Tenorio.

On glued semigroups.
arXiv: 1104.2836v2, 2011.
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DECOMPOSITION OF MODULAR CODES I

Ü Direct Sum

G =

(
A1 0

0 A2

)
∈ Zk×n

m ⇐⇒ I(C) = I( C1 ) + I( C2 )

Ai ∈ Z
ki × ni

m ⇐⇒ length of Ci = ni and dim(Ci ) = rank(Ai ) = ki

Ü 1-gluing

G =


A1 0

b1 b2

0 A2

 ∈ Zk×n
m

with rank( bi ) = 1

⇐⇒ I(C) = I(Ĉ1) + I(Ĉ2) +
〈

Xα − Yβ
〉

G1 =

 A1 0

b1 ∗

 and G2 =

 ∗ b2

0 A2
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DECOMPOSITION OF MODULAR CODES II

Ü 3-gluing

G =


A1 0

B1 B2

0 A2

 ∈ Zk×n
m

with rank( Bi ) = 2

⇐⇒ I(C) = I(C1) + I(C2) +

〈{
Xαi − Yβi

}
i=1,2,3

〉

G1 =

 A1 0

B1 ∗1Im

 and G2 =

 ∗2Im B2

0 A2


with ∗1 + ∗2 = 0.
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4 LINEAR CODES
Applications to other classes of codes

Ü Throughout this section C will be an [n, k ] linear code in Fn
q , i.e. a

k -dimensional linear subspace of Fn
q .

Ü This section essentially follows:

M. Borges-Quintana, M.A. Borges-Trenard, I. Márquez-Corbella and E. Martı́nez-Moro,

An Algebraic View to Gradient Descend Decoding for an arbitrary linear code,
Submitted

I. Márquez-Corbella, E. Martı́nez-Moro and E. Suárez-Canedo

On the ideal associated to any linear code,
Submitted.

Ü Which are joint works:

M. Borges-Quintana (University of Oriente - Santiago de Cuba).
M.A. Borges-Trenard (University of Oriente - Santiago de Cuba).
E. Martı́nez-Moro (University of Valladolid - Spain).
E. Suárez-Canedo (University of Valladolid - Spain).
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DECODING LINEAR CODES

Ü Let α be a primitive element of F∗q .

Characteristic crossing functions:

∇ : {0, 1}q−1 −→ Fq and ∆ : Zq −→ {0, 1}q−1 .

The map ∆ replace

{
the element a = αj ∈ F∗q by the unit vector ej ∈ Zm−1

and 0 by the zero vector 0 ∈ Zq−1.

The map∇ recovers the element j1α + j2α
2 + . . . + jq−1 from the binary vector (j1, . . . , jq−1).

Ü Let X denotes n vector variables X1 , . . . , Xn

Ü Each variable Xi is decomposed into q − 1 components: xi1 · · · xiq−1

Ü Let a ∈ Fn
q we adopt the following notation:

Xa = X a1
1 · X a2

2 · · · X an
n

=
(
x11 · · · x1q−1

)∆a1 ·
(
x21 · · · x2q−1

)∆a2 · · ·
(
xn1 · · · xnq−1

)∆an

Key idea: For all a ∈ Fn
q : deg

(
Xa) = wH (a).

Weight compatible ordering on Fn
q = Total degree ordering on K[X]
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GRÖBNER REPRESENTATION

COMPUTING COSET LEADERS

GRADIENT DESCENT DECODING

MODULAR CODES

RELATIONSHIP TO INTEGER LINEAR

PROGRAMMING

MINIMAL SUPPORT CODEWORDS

HOW TO REDUCE THE

COMPLEXITY?

LINEAR CODES

APPLICATIONS TO OTHER CLASSES

OF CODES

A SEMIGROUP APPROACH

THE SEMIGROUP ASSOCIATED WITH

A MODULAR CODE

THE SEMIGROUP ASSOCIATED WITH

A LINEAR CODE

CONCLUSIONS

APPLICATIONS

DECODING LINEAR CODES

THEOREM: IDEAL ASSOCIATED TO C

Given the rows of a generator matrix of C, labelled by w1, . . . ,wk . The following ideal
match the ideal I(C):

I+(C) =

〈 {
Xα

j wi − 1
}

i=1,...,k
j=1,...,q−1

⋃ {
RXi (T+)

}
i=1,...,n

〉
⊆ K[X]

whereRXi (T+) consist of all the binomials on the variable Xi associated to the
relations given by the additive table of the field Fq = 〈α〉, i.e.

RXi (T+) =

{
{xiuxiv − xiw | αu + αv = αw}
{xiuxiv − 1 | αu + αv = 0}

}

Moreover:

1 We compute a Gröbner representation of C.

2 We show that the binomials involved in the reduced Gröbner basis of I+(C) w.r.t.
a degree compatible ordering define a test-set for C.

3 We define two gradient descent decoding algorithms.

4 We discuss an alternative for the computation of the Gröbner basis of I+(C).

5 We compute the set of codewords of minimal support of C.
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1 We compute a Gröbner representation of C.

2 We show that the binomials involved in the reduced Gröbner basis of I+(C) w.r.t.
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DECODING LINEAR CODES

THEOREM: IDEAL ASSOCIATED TO C

Given the rows of a generator matrix of C, labelled by w1, . . . ,wk . The following ideal
match the ideal I(C):

I+(C) =

〈 {
Xα

j wi − 1
}

i=1,...,k
j=1,...,q−1

⋃ {
RXi (T+)

}
i=1,...,n

〉
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Moreover:

1 We compute a Gröbner representation of C.

2 We show that the binomials involved in the reduced Gröbner basis of I+(C) w.r.t.
a degree compatible ordering define a test-set for C.

3 We define two gradient descent decoding algorithms.
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MODULAR CODES ÜLet C be an [n, k ] modular code defined over Zm

Characteristic crossing functions:

∇m : {0, 1}m−1 −→ Zm and ∆m : Zm −→ {0, 1}m−1 .

The map ∆m replace

{
the element j ∈ Zm \ {0} by the unit vector ej ∈ Zm−1

and 0 by the zero vector 0 ∈ Zm−1.

The map∇m recovers the element j1 + 2j2 + . . . + (m− 1)jm−1 from the binary vector (j1, . . . , jm−1).

Ü Let X denotes n vector variables X1 , . . . , Xn

Ü Each variable Xi is decomposed into m − 1 components: xi1 · · · xim−1

Ü Let a ∈ Zn
m we adopt the following notation:

Xa = X a1
1 · X a2

2 · · · X an
n

= (x11 · · · x1m−1)∆a1 · (x21 · · · x2m−1)∆a2 · · · (xn1 · · · xnm−1)∆an

Ideal associated to C:

I+(C) =

〈{
Xgi − 1

}
i=1,...,k

∪
{
RXi

(
T+
)}

i=1,...,n

〉

whereRXi

(
T+
)

consists of all binomials on the vector variable Xi associated to the relations given by the additive

table of Zm
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GRÖBNER BASIS

BINARY CODES
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MULTIPLE ALPHABETS
ÜLet C be an [n, k ] modular code defined over

Zm1 × . . .× Zmn

Characteristic crossing functions:

∇m : {0, 1}m−1 −→ Zm and ∆m : Zm −→ {0, 1}m−1 .

The map ∆m replace

{
the element j ∈ Zm \ {0} by the unit vector ej ∈ Zm−1

and 0 by the zero vector 0 ∈ Zm−1.

The map∇m recovers the element j1 + 2j2 + . . . + (m− 1)jm−1 from the binary vector (j1, . . . , jm−1).

Ü Let X denotes n vector variables X1 , . . . , Xn

Ü Each variable Xi is decomposed into mi − 1 components: xi1 · · · ximi−1

Ü Let a ∈ Zn
m we adopt the following notation:

Xa = X a1
1 · X a2

2 · · · X an
n

=
(

x11 · · · x1m1−1

)∆a1 ·
(

x21 · · · x2m2−1

)∆a2 · · · (xn1 · · · xnmn−1)∆an

Ideal associated to C:

I+(C) =

〈{
Xgi − 1

}
i=1,...,k

∪
{
RXi

(
T+
)}

i=1,...,n

〉
⇒ RXi

(
T+
)

could be different for each i

whereRXi

(
T+
)

consists of all binomials on the vector variable Xi associated to the relations given by the additive

table of Zm
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ADDITIVE CODES
Let Fq1 be an algebraic extension of Fq2 .

ÜLet C be an Fq2 -additive code over Fq1

Ü Given the rows of a generator matrix of C labelled by {g1, . . . , gk} ⊆ Fq1 .

The set of codewords of C are defined as:{
α1g1 + . . . + αk gk | αi ∈ Fq2 for i = 1, . . . , k

}
Ü Let α be a primitive element of Fq2 .

Ideal associated to C:

I+(C) =

〈{
Xα

j gi − 1
}

i=1,...,k
j=1,...q2−1

∪
{
RXi (T+)

}
i=1,...,n

〉

whereRXi (T+) consists of all binomials on the vector variable Xi associated to the
relations given by the additive table of Zq1
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INTRODUCTION TO SEMIGROUPS

S
Commutative semigroup
with an identity element

S is assumed to be finitely generated

S is cancellative⇒ m + n = m + n′ with
m, n, n′ ∈ S then n = n′.

S is combinatorially finite⇒ exists
finitely many ways to write every

a ∈ S \ {0} as a sum a = a1 + . . . + as
with ai ∈ S \ {0}.
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INTRODUCTION TO SEMIGROUPS

G(S)
Smallest group
containing S

Associated commutative group of S
i : S −→ G(S)

G(S) exists and is unique up to
isomorphism.

S finitely generated⇒ G(S) finitely
generated

S cancellative⇒ i injective
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SEMIGROUP ALGEBRA

Ü The choice of a system of generators {n1, . . . , nr} of S induces a natural
semigroup morphism

π : Nr −→ S
ei 7−→ ni
a 7−→

∑r
i=1 ai ni

Ü Semigroup algebra of S: We write K[S] for the K-vector space:

K[S] =

∑
n∈S

antn | an ∈ K


endowed with a multiplication which is K-linear and satisfies that ta · tb = ta+b

with a, b ∈ S.

Ü π defines a K-algebra morphism:

ϕ : K[X] −→ K[S]
Xi 7−→ tni

Ü Semigroup ideal associated to S: I(S) = ker(ϕ), i.e.

I(S) =

〈{
Xa − Xb |

r∑
i=1

ai ni =
r∑

i=1

bi ni with a, b ∈ Nr

}〉
.
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GRÖBNER BASIS

BINARY CODES
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LATTICES

Ü We describe the lattice L as

L =

{
u ∈ Zr |

r∑
i=1

ui ni = 0

}
⊆ Zr

.

i.e. set of integer solutions of the system AX = 0 where A = {n1, . . . , nr} is a
fix system of generators of S

Ü Given a lattice L ⊂ Zr , the binomial ideal

IL =
〈{

Xa − Xb | a− b ∈ L
}〉

is called the lattice ideal associated to L.

Ü If IL = I(S), then we have an exact sequence of abelian groups given by:

0 −→ L −→ G
(
Nr) = Zr −→ G (S) −→ 0.
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THE SEMIGROUP ASSOCIATED WITH A MODULAR CODE

Characteristic crossing functions:

H : Zs −→ Zs
m and N : Zs

m −→ Zs

The map H is reduction modulo m.

The map N replace the class of 0, 1, . . . ,m − 1 by the same symbols regarded as integers.

Ü Let C be an [n, k ] modular code over Zm with generator and parity check
matrices:

G =



g11 . . . g1n
.
.
.

. . .
.
.
.

gi1 . . . gin
.
.
.

. . .
.
.
.

gk1 . . . gkn


∈ Zk×n

m H =


h11 . . . h1i . . . h1n

.

.

.
. . .

.

.

.
. . .

.

.

.
hl1 . . . hli . . . hln

 ∈ Zl×n
m

Ideal associated to C:

Im(C) =
〈{

Xgi − 1
}

i=1,...,k ∪
{

X m
j − 1

}〉
Ü ProvidesMC .

Ü Does not allow Complete Decoding.

PROPOSITION:

Consider the semigroup S
generated by {hi}i=1,...n then

Im(C) = I(S)

gi

hi
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GRÖBNER REPRESENTATION

COMPUTING COSET LEADERS

GRADIENT DESCENT DECODING

MODULAR CODES

RELATIONSHIP TO INTEGER LINEAR

PROGRAMMING

MINIMAL SUPPORT CODEWORDS

HOW TO REDUCE THE

COMPLEXITY?

LINEAR CODES

APPLICATIONS TO OTHER CLASSES

OF CODES

A SEMIGROUP APPROACH

THE SEMIGROUP ASSOCIATED WITH

A MODULAR CODE

THE SEMIGROUP ASSOCIATED WITH

A LINEAR CODE

CONCLUSIONS

APPLICATIONS

THE SEMIGROUP ASSOCIATED WITH A MODULAR CODE

PROPOSITION:

Let C be an [n, k ] modular code over Zm and H ∈ Z(n−k)×n
m be a parity check matrix

of C. Consider the commutative semigroup S finitely generated by {hi}i=1,...,n where
hj denotes the j-th column of H. Then:

1 I(S) = Im(C).

2 S in not combinatorially finite.

3 S = G(S) ⊆ Zn−k
m , i.e. S = −S.

4 G(S) is a torsion group since ma ≡ 0 mod m, ∀a ∈ S.

5 The lattice L1 =

{
u ∈ Zn |

n∑
i=1

ui hi ≡ 0 mod m

}
is the set NC +

(
mZn).

Then Im(C) = IL1 and we have the following exact sequence of abelian groups:

0 −→ L1 −→ G(Nn) = Zn −→ G(S) = S −→ 0
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ANOTHER REPRESENTATION FOR MODULAR CODES

Characteristic crossing functions:

∇ : {0, 1}m−1 −→ Zm and ∆ : Zm −→ {0, 1}m−1 .

The map ∆ replace

 the element j ∈ Zm \ {0} by the unit vector ej ∈ Zm−1

and 0 by the zero vector 0 ∈ Zm−1
.

The map∇ recovers the element j1 + 2j2 + . . . + (m − 1)jm−1 from the binary vector (j1, . . . , jm−1).

Ü Let X denotes n vector variables X1 , . . . , Xn

Ü Each variable Xi is decomposed into m − 1 components: xi1 · · · xim−1

Ü Let a ∈ Zn
m we adopt the following notation:

Xa = X a1
1 · X a2

2 · · · X an
n

= (x11 · · · x1m−1)∆a1 · (x21 · · · x2m−1)∆a2 · · · (xn1 · · · xnm−1)∆an

Ideal associated to C:

I+(C) =

〈{
Xgi − 1

}
i=1,...,k

∪
{
RXi

(
T+
)}

i=1,...,n

〉

whereRXi

(
T+
)

consists of all binomials on the vector variable

Xi associated to the relations given by the additive table of Zm

Ü ProvidesMC .

Ü Allows Complete Decoding.

PROPOSITION:

Consider the semigroup S
generated by {jhi} i=1,...n

j=1,...,m−1
then

I+(C) = I(S)
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Ü Let H ∈ Z(n−k)×n
m be a parity check matrix of C whose columns are

{hi}i=1,...,n.

1 Row operations on H yields to a new set F̂ : S =
〈

F̂
〉

2 Column operations on H gives the same semigroup S but associated with
another modular code Ĉ, which is equivalent to C.

S = 〈F1〉 = 〈F2〉 but

IF1(S) 6= IF2(S) F1 = {hi}i=1,...,n

n elements

IF1
(S) =

IL1
= Im(C)

L1 = NC+
(

mZn
)

F2 = {jhi} i=1,...,n
j=1,...,m−1

n(m − 1)
elements

IF2
(S) =

I+(C) = IL2

L2 = ∆C +(
mZn(m−1)

)
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Characteristic crossing functions:

∇ : {0, 1}q−1 −→ Fq and ∆ : Zq −→ {0, 1}q−1 .

The map ∆ replace

 the element a = α
j ∈ F∗q by the unit vector ej ∈ Zm−1

and 0 by the zero vector 0 ∈ Zq−1
.

The map∇ recovers the element j1α + j2α
2 + . . . + jq−1 from the binary vector (j1, . . . , jq−1).

Ü Let X denotes n vector variables X1 , . . . , Xn

Ü Each variable Xi is decomposed into q − 1 components: xi1 · · · xiq−1

Ü Let a ∈ Fn
q we adopt the following notation:

Xa = X a1
1 · X a2

2 · · · X an
n

=
(
x11 · · · x1q−1

)∆a1 ·
(
x21 · · · x2q−1

)∆a2 · · ·
(
xn1 · · · xnq−1

)∆an

Ideal associated to C:

I+(C) =

〈{
Xα

j gi − 1

}
i=1,...,k

j=1,...,q−1

∪
{
RXi

(
T+
)}

i=1,...,n

〉

whereRXi

(
T+
)

consists of all binomials on the vector variable Xi
associated to the relations given by the additive table of Fm

Ü ProvidesMC .

Ü Allows Complete Decoding.

PROPOSITION:

Consider the semigroup S
generated by

{
α

j hi

}
i=1,...n

j=1,...,q−1
then

I+(C) = I(S)
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GRÖBNER BASIS

BINARY CODES
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PROPOSITION:

Let C be an [n, k ] code over Fq and H ∈ F(n−k)×n
q be a parity check matrix of C.

Consider the commutative semigroup S finitely generated by
{
α

j hi

}
i=1,...,n

j=1,...,q−1
where hj denotes the j-th column of H. Then:

1 I(S) = I+(C).

2 S in not combinatorially finite.

3 S = G(S) = Fn−k
q , i.e. S = −S.

4 G(S) is a torsion group since pa = 0 in Fq , q = pr ∀a ∈ S.

5 The lattice L2 =

u ∈ Zn(q−1) |
n∑

i=1

q−1∑
j=1

uijα
j hi = 0 in Fq

 is the set

∆C +
(

pZn(q−1)
)

.

Then Im(C) = IL2 and we have the following exact sequence of abelian groups:

0 −→ L2 −→ G
(
Nn(q−1)

)
= Zn(q−1) −→ G (S) = S = Fn−k

q −→ 0.
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ANOTHER REPRESENTATION FOR LINEAR CODES

Ü Consider Fq with q = ps .
Ü Let f (X) be any irreducible polynomial of degree s over Fp and β any root of

f (X).

Characteristic crossing functions:

H : Zs −→ Fq and N : Fq −→ Zs

The map N replaces the class of the elements a = a0 + a1β + . . . + as−1β
s−1 ∈ Fq with(

a0, . . . , as−1
)
∈ Fs

p by the vector N
(

a0, . . . , as−1
)
∈ Zs .

H recovers the element Ha0 + Ha1β + . . . + Has−1β
s−1 from the integer vector

(
a0, . . . , as−1

)
.

Ü Let Y denotes n vector variables Y1 , . . . , Yn

Ü Each variable Yi is decomposed into s components: yi1 · · · yis

Ü Let a ∈ Fn
q we adopt the following notation:

Ya = Y a1
1 · · · Y an

n = (y11 · · · y1s)Na1 · · · (yn1 · · · yns)Nan

Ideal associated to C:

Im(C) =

〈{
Ygi − 1

}
i=1,...,k

∪
{

yp
ij − 1

}
i=1,...,n
j=1,...,s

〉
PROPOSITION:

Consider the semigroup S
generated by

{
β

j−1hi

}
i=1,...n
j=1,...,s

then
Im(C) = I(S)
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Ü Let H ∈ F(n−k)×n
q be a parity check matrix of C whose columns are

{hi}i=1,...,n.

1 Row operations on H yields to a new set F̂ : S =
〈

F̂
〉

2 Column operations on H gives the same semigroup S but associated with
another linear code Ĉ, which is equivalent to C.

S = 〈F1〉 = 〈F2〉 but

IF1(S) 6= IF2(S)
F1 =

{
β j−1hi

}
i=1,...,n
j=1,...,s

ns elements

IF1
(S) =

IL1
= Im(C)

L1 = NC+
(

pZns
)

F2 =
{
αjhi

}
i=1,...,n

j=1,...,q−1

n(q − 1)
elements

IF2
(S) =

I+(C) = IL2

L2 = ∆C +(
pZn(q−1)

)
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DIGITAL REPRESENTATION

The generating set F = {n1, . . . , nr} of a semigroup S is called a digital
representation of S if every element m ∈ S can be written as

r∑
i=1

ai ni with a1, . . . , ar ∈ {0, 1} ⊆ N.

The choice of digital representations of S provides not only complete decoding
algorithms but also the set of codewords of minimal support.
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CRYPTOGRAPHY

CRYPTOGRAPHY

From Greek: Krypto “hidden, secret”+ Graphos “writting”= “hidden writing”.

Ü Make unintelligible messages to potential adversaries.

Complete Decoding has applications in secret sharing schemes.

Ü Every linear code can be used
to construct a secret sharing
scheme.

Ü The set of codewords of
minimal support describe
completely the minimal access
structure of these schemes.
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STEGANOGRAPHY

ESTEGANOGRAFÍA

From Greek: Steganos “covered”+ Graphos “writing”.

Ü The hiding of information through a covert channel with the purpose of
preventing the detection of a hidden message.
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THANKS!!
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