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The Lojasiewicz numbers and plane curve singularities

by EVELIA GARCIA BARROSO (La Laguna), TADEUSZ KRASINSKI (L6d7)
and ARKADIUSZ Prosk1 (Kielce)

Abstract. For every holomorphic function in two complex variables with an isolated
critical point at the origin we consider the Lojasiewicz exponent Lo(f) defined to be the
smallest § > 0 such that |grad f(z)| > ¢|z|? near 0 € C? for some ¢ > 0. We investigate
the set of all numbers Lo(f) where f runs over all holomorphic functions with an isolated
critical point at 0 € C2.

1. Introduction. Let f be a holomorphic function defined near 0 € C?,
such that f(0) = 0 and with an isolated critical point at the origin, and
let (C,0) be the germ of a singular plane curve with local equation f = 0.
Set grad f = (9f/0x,0f/0y). The Lojasiewicz exponent Ly(f) of f at 0 is
defined to be the smallest 8 > 0 such that

(1) |grad f(z)| > ¢|z|’ in a neighbourhood of 0 € C?

with a constant ¢ > 0.

Teissier proved (see [T, p. 275]) that the Lojasiewicz exponent Lo(f)
depends only on the topological type of the germ (C,0); more specifically,
Lo(f) + 1 is the maximal polar invariant of (C,0). In particular Lo(f) is
a rational number. In this paper we investigate the problem which rational
numbers are Y.ojasiewicz exponents of plane curve singularities. Such num-
bers will be called fojasiewicz numbers. The first result in this direction was
obtained in [P1, p. 359]. Namely, each Lojasiewicz number appears in the
sequence
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whose terms greater than 1 are rationals of the form
b

(3) N+—-, abNeZ, 0<b<a<N.
a

For a new proof of this fact see Section 6 (Proposition 6.4). Unfortunately,
not all numbers in (3) are Lojasiewicz numbers. Namely, in [Ga-P] it was
proved that

(4) the terms in (3) for which
a=N-1, b>1, GCD(a,b)=1
(e.g. 4%, 5%, ...) are not Lojasiewicz numbers.
The two results give rise to the following problem:

PROBLEM. Give an effective description of the rationals N + b/a which
are Lojasiewicz numbers.

Our first result is

MAIN THEOREM 1. All the numbers in (3) satisfying
a+b< N

and the number 1 are fojasiewicz numbers. Moreover, these numbers are
exactly the Lojasiewicz exponents of singularities nondegenerate in Kouch-
nirenko’s sense [K]|.

The rationals
N+é, a,bbNeZ, 0<b<a<N,a+b<N,
a

and the number 1 will be called reqular fojasiewicz numbers. The remaining
Lojasiewicz numbers will be called nonregular. Thus Ly(f) is nonregular if
and only if

b
Eo(f):NJra, 0<b<a<N, GCD(a,b)=1, a+b> N.

The problem of characterizing nonregular Lojasiewicz numbers (or at least
finding some of them) is much more difficult. The following theorem gives
necessary conditions for a rational number to be a nonregular Lojasiewicz
number.

MAIN THEOREM 2. If a rational number A = N + b/a is a nonregular
Lojasiewicz number then

(i) a is a composite number strictly greater than 8,
(ii) a+6 <A <2a—1.

Clearly the above theorem implies (4) which is the main result in [Ga-P].
Moreover, we will prove the following result on the existence of nonregular
Lojasiewicz numbers.
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MAIN THEOREM 3. For every composite number a > 8 there exists a
nonreqular f.ojasiewicz number with the smallest denominator equal to a.

We will see in Section 7 that 15% is the smallest nonregular Lojasiewicz
number. Theorems 2 and 3 imply that the set of nonregular f.ojasiewicz
numbers is infinite but the set of such numbers with fixed denominator is
finite.

To prove our main results we will study singularities whose Y.ojasiewicz
exponent has large demominator, i.e. plane curve singularities (C,0) with
the Lojasiewicz exponent of the form N +b/a, a,b coprime and a > %m(C)
where m(C) stands for the multiplicity of the germ (C,0). This condition
imposes rather strong restrictions on the equisingularity class of (C,0) (Sec-
tion 3).

The paper is organized as follows. In Section 2 we collect auxiliary re-
sults concerning the characteristic of branches, the intersection multiplicity
of branches and the f.ojasiewicz exponents of holomorphic functions. In Sec-
tion 3 we investigate the Lojasiewicz numbers with large denominators. In
Section 4 we construct singularities with given Lojasiewicz numbers. Sec-
tion 5 is devoted to arithmetical results needed in the proofs of the Main
Theorems. In Section 6 we give proofs of the main results. In Section 7 we
give remarks and examples.

2. Auxiliary results. We need some auxiliary notions coming from the
theory of plane curve branches (see |22, pp. 7-25]). A sequence of strictly

positive integers (o, ..., 3, is called a characteristic sequence if the following
conditions hold:

(5) Bi < Biy1 forie{0,1,...,9—1}

and if we put e; = GCD(fy, ..., ;) then

(6) ei>eiy1 forie{0,1,...,9—1} and e4=1.

For every characteristic sequence 3y, ..., 3, we define the derived character-

istic sequence B, . .. ,Bg by setting
i—1

— Z(ej_l —e;)p; forie{2,...,g}.

153

Bo=0Bo, Bi=p5, Bi=0pi+

It is easy to check the following properties:
(7) ei-10; < eifiy  forie{l,....g—1}
(8) GCD(By,...,B3;) =e; foric{0,...,g9—1}.

The semigroup (3, ... ,Bg> =NBy+ -+ Nﬁg plays an important role
in the theory of branches (see [Z2]). Every element of (B, ... ,Bg> has a
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unique representation in the form Z?:o ai_lﬁi where a_1,ap,...,a4_1 are
nonnegative integers such that a; < e;/e; 41 for ¢ > 0 (no restriction on a_1!).

Throughout the paper we use standard notation: the intersection mul-
tiplicity of plane curve germs (C,0) and (D,0) is denoted by (C, D)o. The
semigroup I'(C,0) of a plane branch (C,0) is generated by the intersection
numbers (C, D)o where (D,0) runs over all plane curve germs whose com-
ponents are different from (C,0).

Let (C,0) be a plane branch with multiplicity m(C') = n > 1. Let (z,y)
be a system of coordinates such that the line x = 0 intersects (C,0) with
multiplicity n. Then there is a local equation of (C, 0) of the form f(z,y) =0
where f(z,y) = y" + a1(2)y" ! + - + an(x) € C{z,y}, a;(0) = 0, is an
irreducible distinguished polynomial. Write f(x,y) = i, (y — yi(z'/™)) in
C{z'/"}[y] and recall that the Puiseux series y1(z'/™),...,y, (/") form a
cycle, i.e. there is a power series y(t) € C{t} such that y;(z'/") = y(c'z'/™)
where ¢ is a primitive root of unity of degree n. There exists a unique char-
acteristic sequence (o, ..., 3, such that

{ord(yi(a'/™) — y;(x"/™) i # j} = {B1/Bo, - -, By/Bo}
and Gy = n. We call (5[2. .., Bg) the characteristic of (C,0). The derived

characteristic sequence (3, ... ,Eg) generates the semigroup I'(C,0) of the
branch (C,0). Recall that g is the number of characteristic pairs of (C,0).
Every characteristic sequence is equal to the characteristic of a branch. By
convention we put Gy = 1 for every smooth branch.

Let (D,0) be another branch with multiplicity m(D) = n’ > 1 such
that the line # = 0 intersects (D,0) with multiplicity n’. Let g(z,y) =
H;‘,:l(y — zj(z'/™")) € C{xz"/"}[y] be an irreducible power series such that
g(z,y) = 0 is a local equation of (D, 0).

We denote by Char(C,0) the characteristic of the branch (C,0). The
order of contact of the branches (C,0) and (D, 0) is defined by

CODt(C, D) = max{ord(yl(xl/n) _ Zj(l‘l/n/)}.
27‘7

If (C,0) # (D, 0) then cont(C, D) < oo is a rational number > 1. Clearly
cont(C, D) = cont(D, C) and for each branch (E,0),

cont(C, D) > inf{cont(C, E), cont(E, D)}

with equality if cont(C, E) # cont(E, D). According to Chadzynski and
Krasinski (|[Cha-Kra, Theorem 4]) cont(C, D) is equal to the best separation
exponent of the pair (C,0) and (D, 0).

Let us recall

SMITH—ZARISKI FORMULA FOR THE INTERSECTION MULTIPLICITY (see
[S] and [Z1, pp. 927-931]). Let (C,0) be a branch of characteristic (B, . .., By)
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and let (D,0) # (C,0) be another branch. Let k > 0 be the smallest integer
such that cont(C, D) < Bi/Bo (by definition By41/00 = +00). Then

k—1
% - Z(ez 1—€) g— + ep—1 cont(C, D).
i=1

Moreover if (56,...,6;,) is the characteristic of (D,0) then k < ¢ + 1,
cont(C, D) < B3,./6) and B;/Bo = B;/5} fori < k.

REMARK 2.1. The equalities 3;/3y = 5./5 for i < k imply e;/ey = €}/¢,
for ¢ < k and consequently the Smith—Zariski formula can be rewritten in

the form
k—1

<C7 D)O ﬁl
n(C) = ;(e;_l e;) =L 3 + €},_4 cont(C, D).

REMARK 2.2. Let k£ > 0 be an integer. Then cont(C, D) < /0 if and
only if (C, D)o/m(D) < ex_1834/Bo- One has cont(C, D) = /3 if and only
if (C,D)o/m(D) = e—15;/o (see [Gw-P, Lemma 3.4]).

REMARK 2.3. Let (C,0) be a branch of characteristic (o, .. . ,ﬁg) Then

for every 0 < k < g there is a branch (D,0) such that (C, D)y = 3, and
m(D) = fy/ex—1 (see [Gw-P, Lemma 3.1]).

The following statement can be deduced from the corresponding property
of cont(C, D) by using the Smith-Zariski formula (see also [Ch-P]).

STRONG TRIANGLE INEQUALITY. If (C,0),(D,0) and (E,0) are bran-

ches, then
(C, D)o S 1nf{ (C,E)o (E, D)y }
m(C)m(D) ~ | m(C)m(E)’ m(E)m(D) J’
with equality if the two quotients on the right hand side are different.

For every branch (C,0) with characteristic (5o, ..., 8q), g > 0, we put

eg—18
C)=-"""4
() =—73
(it is the greatest polar invariant of (C,0), see for example [P2]). If (C,0)
is smooth then n(C) = —oo. If Char(C,0) = Char(D,0) then we write

(C,0) = (D,0) and call the branches (C,0) and (D, 0) equisingular.
PROPOSITION 2.4. Let (C,0) and (D,0) be two branches. Suppose that
Char(C,0) = (fo, ..., Bg)-
(i) 1f
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(i) 1
=) ad (R0,
then (C,0) = (D,0).
(iii) If
D) aad CH0 o

then Char(D,0) = (fo/eg—1,---,Bg—1/eq—1) and (C, D)o = Bg.
(iv) If (C,D)o/m(D) < n(C) then (C,D)o =0 (modey_1)).

Proof. (i) We may assume that (C,0) and (D, 0) are singular. Let
Char(D,0) = (8, - - ,ﬁ;,).
By Remark 2.2 we get cont(C, D) > 4/8y and cont(C,D) > 3},/53;. By
the Smith-Zariski formula ¢’ = g and §;/6y = 3./ for i € {1,...,g}. By

Remark 2.2, ¢;/eg = €] /ef, for i € {1,..., g} and consequently (o, ...,0,) =

(/607 e 76/)
(ii) We get cont(C, D) = 84/8o = B,/ By by Remark 2.2. By the Smith-

Zariski formula g = ¢’ and ;/60 = B,/8; for i < g. Thus (B,...,0) =

(Bys -+ -+ By)-
(iii) Using Remark 2.2 we get cont(C,D) = (/6o and cont(C, D)

> 5;,/66. Thus ¢’ = g — 1 and 5;/B0 = B,/ for k € {1,...,g—1}. Conse-
quentIY7 egfl/ﬁo = e;//ﬁ(l) (6;, = 1) and 6(/) = ﬁo/egfla whence (ﬁ(/)v R 7/8;’)
= (/60/6‘9715 s aﬁgfl/egfl)' NOW! we get
C,D)y =n(C)m(C) = u) < >
(€.D) = n(C)mic) = (2572 ) () =7,
(iv) Let (D1,0) be a branch such that

Char(D1,0) = (fo/eg—1,--.,Bg-1/€g—1) and (C,D1)o = Eg,
Then (C, D1)o/ m(D1) = n(C) and (C, D1)o/ m(C) > n(D1). Consider the

sequence

(C, D)o (C, D1)o (D, D1)o
m(C)m(D)" m(C)m(D1)" m(D)m(Dy)
One has
(C.D) _n(C) _e1By 0 (C.D)o _ 0(C) _ e-15,
m(C)m(D) ~ m(C) 3% m(C)m(Dy)  m(C) g
Therefore by the Strong Triangle Inequality
(D,D1)o _ (C,D)o

m(D)m(Dy)  m(C)m(D)
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and so

m(C)
m(D1)
Let (C,0) be a germ with equation f = 0, where f is a holomorphic
function with an isolated critical point at 0. Let (C,0) = (J;_,(C}, 0) be the
decomposition of (C,0) into irreducible components. Then we have

(C, D)O = (D,Dl)o = eg_l(D,Dl)o. | |

FORMULA FOR THE L.OJASIEWICZ EXPONENT (see [P2, Theorem 1.3 and
Corollary 1.5]). With the notation introduced above,

o)1 = e SR 4y (€ i}

We will say that a branch (C;,0) of (C,0) is minimal if

Lo(f)+1=max { sip %,n(@)} + m(lC) Z(Ci,Cj)o.
J#i Yt

PROPOSITION 2.5. Suppose that

1 .
Lo(f) +1#n(C;) + m(C) ;(Cucj)o forie{l,...,r}.
Then for every minimal branch (C;,0) there is a branch (Cj,0) with j # i
such that (C;,0) = (C;,0) and
(Cs,Cj)o Z (Ci, Cr)o
w(@) "2 m(@)
Proof. Let (C;,0) be a minimal branch of (C,0). Then by the formula
for the Lojasiewicz exponent,

Lo(f)+1=

(Ci,Cj)o (Cs,Cr)o
m(Cj) g&; m(C;)

for some j. We will show that (C},0) = (C;,0). We may assume that ¢ = 1,
7 = 2, that is,

Lo(f)+1=

(9) Lo(f)+1= (i(’gj))o + m(lol) J;(cl,oj).

By the assumption we get

1
(10) Lo(f)+1>n(Ch)+ el ;(Cl,cj).
Thus, by (9) and (10) we get
(Clv 02)0

(11) (G > n(Ch).
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Using again the assumption of the proposition, we obtain

1
(12) Lo(f) +1>n(Cs2) + m(Cs) Z(Cz, Cj)
J7#2
and a simple calculation based on (9) and (12) gives
(C1, C2)o < (C2,Cj)o (C1,C5)o
m

1) gy et 2 (o~ mem) O

Note that
(@2, C)o o (C1,Cj)o
m(C2) m(C;) — m(Cr) m(Cy)

by the Strong Triangle Inequality, for m((gll)’%()g) < m((gll)’fnb()gb).
J

Now (13) and (14) imply
(19 o2 =iy,

Using (11), (15) and Proposition 2.4 we get (C1,0) = (Cs,0). =

(14) for j #1,2

COROLLARY 2.6. With the assumption and notation of Proposition 2.5
we have

(i) Lo(f) +1=((Ci,Cjlo + > 242i(Ci, Ck)) /m(Cj) for some j # i with
(ii) Lo(f) + 1 has the (minimal) denominator less than or equal to
3m(C).

Proof. The first property follows immediately from Proposition 2.5, for
(C4,0) = (C},0) implies m(C;) = m(Cj). The denominator of Lo(f)+1 is less
than or equal to m(C;) < 1 m(C) since 2m(C;) = m(C;)+m(C;) < m(C). =

PROPOSITION 2.7. Suppose that

L ] Z(Ci,C’j)o for some i€ {1,...,r}.

Lo(f)+1=n(C;) + ——=~
m(C) =

Then
(Ci’ Cj)o
sup ——=— < n(Cy).
i= m(C)) '
If the inequality is strict then the denominator of Lo(f) + 1 is less than or
equal to £ m(C).

Proof. The inequality in the statement follows from the formula for the
Lojasiewicz exponent. Let (fo, ..., [3y) be the characteristic of (Cj,0). Sup-
pose that the inequality in the statement is strict. Then by Proposition 2.4
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we get (C,Cj)o =0 (modey_1) for all j # i. Consequently, we see that the
fraction
m(Ci)n(Ci) + 32;4(Ci, Cio eg-13, + (a multiple of e;_1)

m(C}) Bo
has the denominator < ffy/eg—1 < m(C;)/2 < m(C)/2. =

Lo(f)+1=

To illustrate the above propositions we prove

PROPOSITION 2.8. Let (C,0) = |J;_,(C;,0) be a decomposition of the
germ (C,0) with local equation f = 0 into branches. Then there exist a
branch (Cj,,0) and an integer v € I'(C;,,0) such that

_ "
Lo(f)+1= m(C, )

Proof. 1f the assumption of Proposition 2.5 holds then the assertion fol-
lows from Corollary 2.6. Otherwise use Proposition 2.7. =

3. Lojasiewicz numbers with large denominators. Let f with
f(0) = 0 be a holomorphic function near 0 € C? with an isolated criti-
cal point at 0 and let (C,0) be a germ with local equation f = 0. Suppose
that Lo(f) is not an integer and write Lo(f) = N +b/a with 0 < b < @ and
GCD(a,b) = 1. From Proposition 2.8 it follows that a < m(C).

LEMMA 3.1. If Lo(f) = N+b/a with a < m(C) then Lo(f) is a reqular
Lojasiewicz number.

Proof. From a < £ m(C) we get a + b < 2a < m(C) and hence a + b <
m(C) — 1. On the other hand, it is easy to check that Lo(f) > m(C) — 1,
which implies N > m(C)—1>a+b. u

By Lemma 3.1 when looking for the singularities f = 0 with nonregular
Lo(f) we may restrict our attention to those for which Lo(f) = N + b/a,
0 <b < a, GCD(a,b) = 1 and a > £ m(C). In this case we say that Lo(f)
has large denominator.

THEOREM 3.2. Suppose that the Lojasiewicz number Lo(f) of a plane
curve singularity (C,0) has large denominator. Then the germ (C,0) has at
least two branches and there is a decomposition (C,0) = |J._,(C;,0) into
branches such that the following conditions are fulfilled:

(i) The branch (C1,0) is singular. If (Do, ..., [Bq) is the characteristic of
(C1,0) then (Bo/eg—1, - - -, Bg—1/€g—1) is the characteristic of (C3,0).

Moreover (C, C2)o = 3,
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(ii) For every i # 1,2,
(C1,Ci)o (€2, Ci)o < (C1,C2)o '
m(C1)m(C;) m(Ce)m(C;)  m(Cr) m(Cy)
(iii) Lo(f)+1 = (eg,lgg + B, + 6)/Bo where 6 = > iz1.2(C1, Ci)o. More-
over 6 € (By, .-, By_1)-
Let (fo, ..., 4) be a characteristic sequence. We say that a rational num-

ber A is associated with (Bo, ..., 3,) if there is an integer § € (B, ..., 3, 1)
such that

egflﬁg + Bg + 6

A=
Bo

Using Theorem 3.2 we get

COROLLARY 3.3. If the Lojasiewicz number Lo(f) has large denominator
then there is a singular branch (C1,0) of (C,0) such that Lo(f) is associated
with the characteristic of (C1,0).

Another application of Theorem 3.2 is the following

COROLLARY 3.4. If the Lojasiewicz number Lo(f) has large denominator
then there is a decomposition (C,0) = |J;_,(C;,0) into branches such that
Yoiom(C;) <m(Ch) and m(Cy) divides m(Ch).

Proof. By Theorem 3.2 there is a decomposition (C,0) = J;_,(C;,0)
into branches such that (C4,0) is singular and Lo(f) is associated with the
characteristic (0o, ...,3q) of (C1,0). It is easy to see that Sy = m(Ch) is
the denominator of Lo(f). Therefore m(Cy) > 3m(C) and the corollary
follows. m

Proof of Theorem 3.2. By Propositions 2.4 and 2.7 we may assume that
there is a decomposition (C,0) = (J;_,(C;,0), r > 2, such that

(16) Lo(f)+1=n(Cy) + @;@,OJ’)O,
(17) max 0G0 _ (1% _ )

i#1 m(Cj) m(C2)

Using (16) and the formula for the Lojasiewicz exponent, we get

n(Cy) + m(C) ;(Clvcj)o =Lo(f) +1
(Cs,Cy) 1
> max { rjn;;c H?Tj)o,n(Cz)} + m(Cy) Z(Cz,cj)m
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and by (17),
(C1,C2)o (C2,Cj)o
ey 2 e iy
(C2,Cj)o (C1,Cj)o m(C
*;( ) O m) ™

Using (17) and the Strong Triangle Inequality we check that the sum on
the right side of the above inequality is positive.
Therefore, we have

(18) Cro2l = ey
and
(19) (C1, Ca)o > max (Ca, Cj)o.

m(©) =5 (G
We claim that
(Clv 02)0

m(C1)
In fact, if we had (C1, C2)o/m(Cy) = n(Cy) then by Proposition 2.4 we would
get (C1,0) = (C9,0) and consequently m(C7) = m(Cs), which is impossible
because Lo(f) has large denominator. Now, from (17) and (20), by Propo-
sition 2.4 we get Char(C1,0) = (fo,...,0), Char(C2,0) = (fo/eg—1,-- -,
Bg-1/eg-1) and (C1,Ca)o = 3,

Now, we see that (19) can be rewritten in the form

(C2,C))o ﬂ
(21) WXy S o

(20) > n(Ca).

We claim that
(€1, _ (C1,C2)o
m(C}) m(C)
To check (22) we suppose that there is a j # 1,2 for which the inequality
is not true. Suppose that j = 3. Thus we may replace (C3,0) by (Cs,0)
in the reasoning above to get Char(Cs,0) = (fo/eg—1,- .., Bg—1/eq—1) and
(C1,C3)p = Bg. By the Strong Triangle Inequality we get

Go \?. (C1,C2)o (C1,C3)o
(02,0?,)02(69_1) mf{ m(C1) m(Ch)’ <01>m<03>}

_ < Bo > €g— 15 59
B €g—1 ﬂO a 6971'

(22)

for j #£1,2.
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Since 3,/eg—1 is not an integer, (Cy, C3)o > 3,/eg—1 and (Ca, C3)o/m(Cs) >
Eg/ﬁg, which contradicts (21). Then (22) and consequently (ii) of Theo-
rem 3.2 hold true.

To prove (iii) observe that

Lo(f)+1=n(C1) + @ ;wl,cj)
~ (C1,C2)0 | (C1,C2)0 1 A
T @) m@n) +mmnggf1‘m

_ eg-10, +@—|— o _ €108y + By +90

Bo Bo  Bo Bo
where § = Zj;él,Q(Ch Cj)o.

Moreover, we get

0= Z (C1,Ci)o = Z m(C) (Ca, Ci)o

i#1,2 i#1,2
= €g-1 Z 027 0 € ﬁO? "7Bg—1>
1#£1,2
for I'(Cs,0) = (Bo/eg—1,---,By_1/€g-1). =
ExAMPLE 3.5. From Theorem 3.2 it follows that any Y.ojasiewicz number

Lo(f) with large denominator is associated with a characteristic (0, .. ., 8y),
g > 2, ie.

eg-18,+ B, +0
Bo

for some § € (B, ... ,Bg_1>. Unfortunately, this property is not sufficient
for a rational number to be a f.ojasiewicz number with large denominator.
Consider the rational number

Lo(f)+1=

142
A =169 143
It is associated with the characteristic (5o, 01, 52) = (143,154,164) and
§ = 308. In fact, we have in this case (eg, 1, e2) = (143,11,1), (By, 31, B2) =
(143,154,2012) and
€g— 0 — _ _
: 1ﬂgﬁ—z Po t and & =20, € (By, B1)-
It is easy to check that the characteristic (143,154, 164) and 6 = 308 are
unique for A.
We claim that A is not the Lojasiewicz number. Assume to the contrary
that X is the Lojasiewicz number Ly(f) of a plane curve singularity (C,0).
Since A has large denominator it is associated with a characteristic. By the

A+1=




Lojasiewicz numbers and plane curve singularities 139

above consideration it is (8o, 51, 02) = (143,154,164) and 6 = 308 (deter-
mined uniquely). According to Theorem 3.2, (C,0) has a decomposition into
branches (C,0) = J;_,(C;,0), r > 3, where

(i) (C1,0) has the characteristic (143,154,164),

(ii) (C9,0) has the characteristic (13,14),

(ii}) (C1,Ch) = 2012, (C1,Ci) = 11(Cs, Cy) for i > 3,

(iV) (Cl, C3U---U C,«) = 308.
Since the characteristic of (C1,0) is (143,154,164), by (iv) we have two
possibilities:

1. r = 4. Then (5, Cy are nonsingular and have the same tangents as C].
Hence (C3,C4) > 2. By the formula for the Lojasiewicz exponent

Lo(f)+1= méfclc“

where
_ A 4 (Ci, Cj) 1 4 .
lCi = mmax {W(CZ)7I§1:&1X m(CJ) + m(C’z) : (CZ7C])'
i J.;l.
VED

It is easy to check that
lg, > 172,

which gives a contradiction.

2.7 = 3. Then m(C3) = 2 and C3 has the same tangent as C;. Hence the
characteristic of Cs is (3, 3]) = (2,0}), where 3] > 3. Since we have the
general inequality n(C3) > (3], it follows that n(C3) > 3. Then again by the
formula for the Lojasiewicz exponent we easily check that

lo, > 171,

which gives a contradiction.

4. Singularities with given Lojasiewicz exponent. Let us begin
with the following

PROPOSITION 4.1. Let (C1,0) be a singular branch with characteristic
(Bo,---,Bq) and let B = f;il B; be a finite union of finite sets B; of
branches such that:

(i) Every branch of B_1 is smooth and intersects (C1,0) with multiplic-
ity Bo. Any two different branches of B_1 intersect with multiplic-
ity 1.

(ii) For i > 0, B; consists of at most one branch (I7;,0). The branch
has the characteristic (Bo/ei, ..., 0i/ei) and intersects (C1,0) with
multiplicity Bi_,_l.

(iii) Bg—1 # 0.
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Put a; = $B; (thus a; =0 ora; =1 for 0 <i < g—2 and ag—1 = 1; we do
not impose any restrictions on a—1). Let f = 0 be the minimal equation of
the germ ( *g:_il B; UC1,0). Then

_ _ _9 _
egfl/gg + ﬁg + 2?271 aiﬁi—i—l
Bo '

By convention (I,0), resp. (I'_1,0) runs over all branches of B, resp. B_;.
To prove Proposition 4.1 we need

Lo(f)+1=

PROPERTY 4.2. Let B; # 0 for some i > 0. Then, for every (I',0) €
B — Bz

(i)

(I3, 1o < B
m(I) ~ Bo’
)

Proof. Fix (I',0) € B — B;. Then (I',0) € B; for a j # i. We apply the
Strong Triangle Inequality to the germs (I",0), (I3,0) and (C1,0). Since i # j
we get _

(I,Ci)o  €iBjp
m(M)m(C) B3

and consequently

e (I, Ch)o

278 T m(h)m(C)

(I, I3)o —inf { eiBH-l 6]’6;‘4—1 }
m([") m(1;) g " 5
This implies the assertion. m
Proof of Proposition 4.1. Set
(Cl, F)O 1
2 =
(23) l; = max {n(Cl),max ) + m(C) Z(Chf)m

res m
res

and for every (I3,0) € B;,

(24) lr, = max {W(Fi)vlr{lf}i (11;17(11:;07 (Ir;iv(gll))o}

1
+ () ((FZ-, Ci)o+ l;i(ria F)o)-

By the formula for the Lojasiewicz exponent we get
-1
(25) Lo(f) + 1 = max{l, thax max I }.
i=—1 FEB,‘

To calculate [; recall that n(Cy) = eg_lﬁg/ﬂo. If (I,0) = (I3,0) forani >0
then (C1, IM)o/m(I") = eiB;y1/B0 < eg-18,/Po, while if (I,0) € B_; then
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(C1,I)o/m(I") =1, and we get

(Cl,F)o} _ eg—lBg

(26) e (). g 1 =

and consequently

e =P LS =Py ta Z aiBis

e W TR,
_ €g— 1/8 + ﬁ + 21—71 aiﬁi-}-l
Bo '

To compute I, for i > 0 observe that

(I 7)o (I,C1)o | Bin
mas {019, e (ot (g = Bt

Indeed, n(I3) < B;41/Po (by definition of n(I)), and (I}, C1)o/m(Cy) =
Biy1/Bo and (I, I;)o/m(I") < B;,1/Bo by Property 4.2. Therefore

Bis1  €iBipa 1
28 Ir, = I, r
(28) R * Bo + m(17;) F;,( Jo
Biy1 | 10, 1 T I
= Bo * Bo " m(Ch) 1;} Ll =h

by Property 4.2 and formula (27).
Now, suppose that B_; # 0 and let I'_; € B_;. Since the branch (I_1,0)
is smooth, we have n(/_1) = —oo and by (24) we get

(U1, 1o (I1,Ch)
(29) lry = maX{Fgél%Xl ml(F) x ml(CS 0}

(I, C)o+ > rsp (11,0
IH(ILl)
g—1

=14 > () +m(c)=m(ciu | B) <.

T4 i=—1

Proposition 4.1 follows from (25) and (27)-(29). =

We complete Theorem 3.2 by the following result:

THEOREM 4.3. Let (fo,...,0By), g > 0, be a characteristic sequence and
let § =a-18y+aofy + - +ag-2B,_1 € (Bo,---,B4-1) be such that a; =0
ora; =1 for0 <i< g—2. Then there exists a plane curve singularity (C,0)
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with a local equation f = 0 for which there is a decomposition into branches
(C,0) =U;_,(C;,0), r > 1, such that:

(i) The branches (C1,0) and (C2,0) are of characteristic (ﬁo,._..,ﬂg)
and (Bo/eg-1,---,Bg-1/eg-1), respectively, and (C1,C2)o = B,
(ii) For every i # 1,2,
(C1,Ci)o (€2, Ci)o (C1,Ca)o
m(C1)m(C;)  m(Co)m(C;)  m(Cr)m(Cy)

(iii) Lo(f) +1 = (eg-184 + By +6)/Bo and & =37, 5(C1, Ci)o-

Proof. Let (C1,0) be a branch with characteristic (fo,...,0y). By
Remark 2.3 there exists a finite family of finite sets B; of branches
(i = —1,0,...,9 — 1) such that the assumptions of Proposition 4.1 are
satisfied with §B; = a;. Let (C2,0) be the unique branch of the family
By—1 and let (C;,0), j € {3,4,...,r}, be the branches of U:?:_zl B;. Let
(C,0) = U;_,(C;,0). Using Proposition 4.1 we check that the three asser-
tions of the theorem hold true. =

EXAMPLE 4.4. Let p > 2 be a prime number. Then \ = (p + 1)% — 1/p?
is a nonregular t.ojasiewicz number. Indeed, let (By, 51, 32) = (p?,p* + p,
p?+2p —1) and § = 0. By Theorem 4.3 there is a plane singularity f = 0
(with two branches) such that

Colf) +1= P20,

Obviously Lo(f) = X and Lo(f) is nonregular.

5. Arithmetical lemmas. Let (5, ..., [3,) be a characteristic sequence.
Recall that a rational number X is associated with (fo, ..., ,) if there is an
integer § € (B, ..., 3,_1) such that

eg-10,+ By + 06
Bo '

Let A\ =N +b/a, 0 < b < a, GCD(a,b) = 1, be a number associated with
(Bo, - -, Bg). We say that X is reqular (resp. nonregular) if a +b < N (resp.
a+b>N).

A+ 1=

LEMMA 5.1. Suppose that A= N+b/a, 0 <b< a, GCD(a,b) =1, is a non-
reqular number associated with a characteristic sequence (Bo, ..., 0By). Then

(i) B1 < A+1 <208,
(ii) a = ,60,
(i) ¢ > 2.
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Proof. Tt is easy to see that A+1 < 2a. If A is associated with (fo, ..., Gy)
then obviously a < By and we get A + 1 < 2(p. On the other hand,

69—139 + Bg > eDBl

A+1>
Bo Bo

:El :ﬁla

which proves (i).

To check (ii) observe that if we had a < [y then the fraction A +1 =
(eg,lﬁg —G—Bg +0)/Bo would simplify and we would get a < [y/d < [y/2
(where d > 1 is a divisor of fy) and A + 1 < 2a < 3y, which is impossible
by (i).

Now we check (iii). To this end we have to show that any number \
associated with the sequence ((, 1) is regular. We get A = 1 +a_1 +
B1 — Po/Bo with an integer a_q > 0. If 81 — By > [ the integral part of X is
greater than 20y, while if 51 — By < By then (81 — Bo) + Bo = f1 < [A]. In
both cases ) is a regular number. u

LEMMA 5.2. Let (fo,...,[Bq) be a characteristic sequence such that there
exists a nonreqular number associated with it. Then

(i) (eg—1+1)B, < 23,
(11) ﬁl + @ + (61 + 1)(B2 - 51)
e1 Bo
Bo P 203

i) — < —< .
( )61 el e1+1

< 20,

Proof. The first condition follows from the inequality
(69*1 + 1)Bg
Bo

and 5.1(i). To get (ii) we use (i) and the inequality (e;+1)8y < (eg—1+1)0,,
which holds for g > 2. Finally, (iii) follows from (ii). =

A+1>

PROPOSITION 5.3. If A = N +b/a, 0 < b < a, GCD(a,b) = 1, is
a nonregular number associated with a characteristic sequence, then a is a
composite number strictly greater than 8 and N > a + 6.

Proof. The number A = N + b/a is associated with a characteristic se-
quence (o, ..., [3y) such that By = a and g > 2. Therefore a is not a prime
number (if Sy = a is a prime then g = 1). To check that a > 8 it suffices to
prove that the numbers associated with characteristic sequences (5o, . .., y)
such that Gy € {4,6,8} are regular. We may assume that g > 2. If 5y = 4
then e; = 2 and condition (iii) of Lemma 5.2 is not satisfied because there
is no integer in the interval (Gop/e1,2060/(e1 + 1)) = (2,2%). If By = 6 then
e;1 = 2 or e; = 3 and in both cases the interval (8y/e1,200/(e1 + 1)) does
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not contain integers. Let §p = 8. Thene; =4 ore; =2.If fp =8 and e; =4
then condition (iii) of Lemma 5.2 gives 1 = 12. Obviously g < 3. If g = 3
then (Bo, ..., 03) = (8,12, B2, #3) where B2 > 12 and (3 = 0 (mod 2), that is,
B2 > 14. It is easy to check that condition (ii) of Lemma 5.1 is not satisfied
and consequently every number associated with (8,12, (33, 33) is regular.

Suppose now that g = 2. Then (8o, 51,02) = (8,12, 32) where 33 # 0
(mod 2) and 2 > 12. Condition (ii) of Lemma 5.1 is satisfied only if 55 = 13.
We check easily that the numbers associated with the sequence (8,12, 13) are
regular. Similarly a sequence (0, 81, f2) with Gy = 8 and e; = 2 satisfies the
conditions of Lemma 5.2 if (G, 81, f2) = (8,10, 11). Every number associated
with the sequence (8,10, 11) is regular. This proves the first part of the
proposition.

Let a > 8 be a composite number and let A = N + b/a be a nonregular
Lojasiewicz exponent associated with the sequence (0, ..., 3q). Then By = a
and g > 2 by Lemma 5.1. From the formula for A\ we get A > 31 — 1+ 31/e1
and consequently N > 31 — 1+ (31/ey. If 51 > a+ 5 then the last inequality
gives N > a+6, for 31 /e; is an integer greater than or equal to 2. It suffices
to consider the cases 81 € {a + 2,a+ 3,a + 4}.

If 31 = a+ 2 then ey = 2 and

2
NZ(CL—i—Q)—l—F%Z&—i—G for a =0 (mod2) and a # 4, 6.

If 61 = a+ 3 then e; = 3 and
a+3 a
Nz(a+3)—1+T:a+3+§2a+b for a =0 (mod3) and a > 9.

If6i=a+4thene; =2o0re; =4.If 51 =a+ 4 and e; = 2 then

4
NZ(a+3)+%za+5+%2a+6 for a =0 (mod?2).
If 61 =a+4 and e; = 4 then

4
Nz(a+3)+%:a+4+22a+6 for a =0 (mod6) and a # 4. =

LEMMA 5.4. For every composite integer a > 8 except 12, 14, 15, 20,
there exists an integer ¢ > 0 such that

(30) P+ % <(p+1l)c<a and GCD(a,c) =1,

where p > 1 is the smallest prime divisor of a.

Proof. For every composite integer a, 8 < a < 30, except 12, 14, 15, 20,
we give a specific ¢. Namely, one can easily check that the following pairs
(CL,C) fulfil (30) (97 2)7 (1073)1 (1675)a (18,5)7 (2174)a (2275)7 (24, 5)7 (2572)a
(26,7), (27,4), (28,9), (30,7).
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For every composite integer a > 30 we apply induction with respect to
the number of prime factors of a.

Let a = pp1---pr > 30, r > 1, be a factorization of a into prime factors
such that p < p; <--+ < p,. The condition (30) means that we should find
an integer

)

<p—+p1-~1» pp1~-pr>
(RS

p+1 p+1
coprime to ppj - - - pr. The length of this segment is equal to
l = pl .. .p Z);l — L
"p+l p+1

So, it suffices to find an integer ¢ coprime to pp; - - - p, in each open segment
(A, A+1) for every A > 0. We do this by induction with respect to 7.
1°. r = 1. Since a = pp; > 30 it follows that

(i) if p =2 then p; > 17,
(ii) if p = 3 then p; > 11,
(iii) if p > 5 then p; > 7.

In case (i) (resp. (ii), (iii)) the length [ of the segment is > 5 (resp. >4, > 3).
In each segment of length > 5 (resp. > 4, > 3) we can always find an integer
coprime to 2 and p; > 17 (resp. to 3 and p; > 11, to p > 5 and p; > 7).

2°. r = r+ 1. Assume that for every pp1---pr > 30, r > 1, p < p; <
... < pr, p,p; primes, and for every open segment (A, A+py-- -prﬁ—#),
A > 0, there exists an integer ¢ belonging to this segment and coprime to
ppL-- Dy

Take a = pp1---pr+1 > 30, p < p1 < ... < pry1, P, p; primes and a
segment (A, A+py-- -p,url;ﬁ — 1%)’ A > 0. Put pg := p and consider two
cases:

(i) There exist ¢,5 € {0,1,...,r 4+ 1}, i < j, such that p; = p;. Take the
smallest such 4. If pop1 -+ - pj—1pj+1 - - Pr+1 > 30 then by induction hypoth-
esis there exists an integer

po—1 po)
po+1l po+1

coprime to pop1 - - Pj—1Pj+1 - Pr+1. Since p; = pj, it follows that c is co-
prime to pop1 - - - pr+1. Moreover,

cE <A, A+pi--pj_1pj+1- - Pro1

po—1 Po
A A D Dt e _
< , A+ Pj—1Pj+1 Dr+1 Po+1 Do + 1>

po—1 Po
ClAA+p--- — .
( p1 Pr+1p0_%1 p0+_1)

Hence c satisfies the required conditions.
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If pop1 - - pj—1Pj+1 - - - Pr4+1 < 30 then we easily check that a is one of the
following numbers: 32, 36, 40, 44, 45, 48, 50, 52, 54, 56, 60, 63, 75, 81, 90,
98, 147, 150, 242, 338. In each case we easily check that there exists ¢ with
the required properties.

(ii) po < p1 < -+ < pr4+1. Consider two subcases:

(a) pop1 - - - pr > 30. Then by induction hypothesis applied to pop; - - - pr,
theNre exists an integer ¢ € (A4, A—Hil . -prggj _pfil) coprime to pop1 - - - pr.
If ¢ is also coprime to p,41 then ¢ is the required number, since the above
segment is contained~ in (A, A+ p1'”pr+1ggﬁ = pf—?—l)' If ¢ is not co-
prime to pr41 then ¢ = kpy41 for some k£ € N. Obviously k is coprime
to pop1---pr- We put ¢ := ¢+ pop1---pr and we claim that ¢ satisfies
the required conditions. Obviously c¢ is coprime to popi - - - pri1. Moreover

c € (A,A —i—pl‘--prﬂzg; — pg’j)rl). In fact, since ¢ > ¢, it suffices to

check that ¢ < A + pl---pr+1g°—_1 — 20 To prove this we first show

that o+1 po+1°
a
po+1
(31) Pro1 > p0_1p0+1.

In fact, if pg = 2 then p,11 > 7 (because r > 1, pg < .-+ < pr41 and
pop1 - - pr+1 > 30) and inequality (31) follows. If py > 3 then p,11 > po + 4
(because r > 1 and pgp < --- < pry1) and (31) also follows. From (31) we
get

po—1 Po po—1 Po
— > A+ — +
po+1 po+1°~ Prosbro T T o1 L Pop b

> C+pop1--pr=c.

A+pr-pra1

(b) pop1 - - - pr < 30. Since pops - - - pr+1 > 30, we only have the following
cases:

l.a=2-3-p, p2 >,
2.a=2-5-p, p2 >,
3.a=2-7-po, po > 11,
4.a=2-11"po, p2 > 13,
5.a=2-13" pa, po > 17,
6.a=3-5-p2, p2 >,
7.a=3-T7-ps, po > 11,
8.a=2-3-5-p3, p3=>T.

In case 1 the length [ of the segment satisfies the inequality

_1 1 2
Po=2 P Sg.7.2_ 245
o+l po+1 33

[ = p1p2
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It is easily seen that in any segment of length > 6 one can find an integer
coprime to 2,3 and p2 > 7. We consider the remaining cases similarly.
This ends the proof of the lemma. =

6. Proofs. The proofs of our results presented in the introduction are
based on the theorems proved in Sections 3 and 4 and on the arithmetical
lemmas from Section 5.

We omit the proof of the following simple lemma:

LEMMA 6.1. Fvery singular branch of a nondegenerate singularity in
Kouchnirenko’s sense has exactly one characteristic pair.

Now we can give

Proof of Main Theorem 1. Let N,a,b be integers such that 0 < b < a,
GCD(a,b) =1and a+b < N.If a+b < N then the function f(x,y) =
yNt2 ppyN+L p gatlyN=a=b 4 2N is nondegenerate in Kouchnirenko’s sense
and Lo(f) = N + b/a (to calculate Lo(f) one can use [L, Theorem 1]). If
a+0b= N then we take f(z,y) = y**! + yal.

Suppose that f defines a nondegenerate singularity at 0 € C2. If the
Lojasiewicz number Lo(f) has the denominator less than or equal to 2 m(C)
then Lo(f) is regular by Lemma 3.1. If £o(f) has large denominator then
by Corollary 3.3, Lo(f) is associated with the characteristic of a singular
branch of (C,0). Thus Lo(f) is regular by Lemmas 6.1 and 5.1. =

LEMMA 6.2. Every Lojasiewicz nonregular number A is associated with
a characteristic, i.e. A+ 1 = (eg—18, + B, +0)/Bo with 6 € (By, ..., B,-1)-

Proof. Let A = Ly(f) be a Lojasiewicz nonregular number. Then Ly(f)
has a large denominator by Lemma 3.1 and is associated with the charac-
teristic of a branch of f = 0 by Corollary 3.3. =

Proof of Main Theorem 2. Let A = N 4 b/a be a nonregular Lojasiewicz

number. Then by Lemma 6.2 it is associated with a characteristic sequence.
Now use Lemma 5.3. u

The lemma below follows immediately from Theorem 4.3.

LEMMA 6.3. Let (Bo,...,0B¢), g > 0, be a characteristic sequence and let
6= a_130 + aoﬁl 4+ 4 ag_gﬁg_l with a; =0 ora; =1 fori> 0. Then A
defined by
eg-18,+ B, +6

A1=
Bo

1s a Lojasiewicz number. u

Proof of Main Theorem 3. Let a > 8 be a composite integer. Consider
three cases:
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1. a = 14, 15, 20. By Lemma 6.3 one can easily check that 24%, 24%,
33%—8 are nonregular Y.ojasiewicz numbers associated with the characteristic
sequences (14,16,25), (15,18,25) and (20, 22, 35) for § = 0, respectively.

2.a# 14,15,20 and a # 0 (mod 6). Let ¢ be an integer as in Lemma 5.4.
Then by Lemma 6.3 for the characteristic sequence (a,a + p,a + p + ¢) and
6 = 0 we deduce that

+1
A:a+p+%+gL—E

is a Lojasiewicz number. It is a nonregular Y.ojasiewicz number with deno-
miator a.

3. a = 0 (mod6). By Lemma 6.3 for the characteristic sequence
(6o, B1,02) = (a,a+2,a+a/3+1) and § = a + 2 = (3; we find that
3 -1
A= 484

is a L.ojasiewicz number. It is a nonregular Y.ojasiewicz number with denom-
inator a.
This ends the proof of the theorem. m

Finally, let us prove the property of Lojasiewicz numbers mentioned at
the beginning of the introduction.

PROPOSITION 6.4. Fvery Lojasiewicz number X\ € N can be written in
the form A= N +b/a, a,b,N e N 0 <b<a<N.

Proof. If a +b < N then the assertion is obvious. Suppose that A is
a nonregular Lojasiewicz number. By Lemma 6.1, A is associated with a
characteristic sequence (0,...,0y). Suppose that GCD(a,b) = 1. Then
by Lemma 5.1 we get a = By and N > [y for A > 31 — 1 > [y. Thus
a<N.n

7. Remarks and examples. 1. It is not easy to determine successive
nonregular Yojasiewicz numbers. We will show that \g = 15% is the smallest
nonregular t.0jasiewicz number. Putting p = 3 in Example 4.4 we find that
15% is a Lojasiewicz number. Let A = N 4+ b/a, a,b,N € N, 0 < b < a,
GCD(a,b) = 1, be a nonregular Lojasiewicz number. We have to check
that A > 153. If a > 9 then A > 16 by Main Theorem 2. Let a = 9.
Since A is nonregular, it is associated (by Lemma 6.2) with a character-
istic sequence (0o, 81, 02) with By = 9. Using Lemma 5.2 we check that
(Bo, 1, 02) = (9,12,13) or (9,12,14) or (9,12,16) and that the numbers
associated with these sequences are 15%7 16%, ce; 15%7 16%, cel 16%, ..., Te-
spectively. Thus A > 15% provided A is nonregular.
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2. To solve the problem stated in the introduction it suffices to de-
scribe the t.ojasiewicz numbers associated with characteristic sequences.
More specifically, it would suffice to give for every characteristic sequence

(Bo, Bi, - - -, B,) an effective description of all § € (B, ... ,Bgfﬁ for which
(egflﬁg + Bg +0)/0Bo — 1 is a Lojasiewicz number.

3. B. Teissier proposed the following application of the main result. Let
O = Ocz2 be the ring of holomorphic function germs at 0 € C2. An ideal
I C O is called a jacobian ideal if there exists a holomorphic function
germ f with isolated critical point at 0 such that I = (0f/0x,df/0y)
in O. From Main Theorem 2 we easily obtain examples of nonjacobian
ideals.

ExAMPLE 7.1. Using Main Theorem 2 we can find rational numbers
N +b/a, 0 < b < a< N,a+b > N, which are not Lojasiewicz num-
bers. Then the ideals I = (2! — y%, 2V "by%) C O are not jacobian ideals.
Indeed, suppose to the contrary that there exists a holomorphic function
germ f such that [ = (0f/0xz,0f/0y) in O. One checks that it would im-
ply Lo(f) = Lo(I) = N + b/a (see [P1]), which contradicts the choice of
N +b/a.
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