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ON SPECIAL VALUES FOR PENCILS OF PLANE CURVE

SINGULARITIES

by Arkadiusz P loski

Abstract. Let (Ft : t ∈ P1) be a pencil of plane curve singularities and
let µt

0 be the Milnor number of the fiber Ft. We prove a formula for the
jumps µt

0 − inf{µt
0 : t ∈ P1}. As an application, we give a description of

the special values of the pencil (Ft : t ∈ P1).

Introduction. Let (Ft : t ∈ P1), P1 = C ∪ {∞} be a pencil of plane
curve singularities defined by two coprime power series f, g ∈ C{X, Y } without
constant term. That is Ft = f − tg for t ∈ C and F∞ = g. Let µt

0 be the
Milnor number of the fiber Ft and let

µmin
0 = inf{µt

0 : t ∈ P1}.

Our aim is to give a formula for the jumps µt
0 − µmin

0 by means of the mero-
morphic fraction f/g considered on the branches of the Jacobian curve

j(F ) =
∂f

∂X

∂g

∂Y
− ∂f

∂Y

∂g

∂X
= 0.

Roughly speaking we will show that µt
0−µmin

0 = the number of zeros of f/g−t
if t ∈ C and µ∞0 − µmin

0 = the number of poles of f/g on the branches of the
Jacobian curve j(F ) = 0 provided that µt

0 6= +∞ (resp. µ∞0 6= +∞). Then we
prove a known result on the special values of the pencil (Ft : t ∈ P1).
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1. Preliminaries. Let f ∈ C{X, Y } be a non-zero power series without
constant term. We say that the curve f = 0 is singular if ∂f/∂X(0, 0) =
∂f/∂Y (0, 0) = 0. A branch P is a prime ideal of C{X, Y } generated by an
irreducible power series p. Let B be the set of all branches. For any curve
f = 0, we put

B(f) = {P ∈ B : f ≡ 0(modP )} .

We put by definition (f, g)0 = dimC C{X, Y }/(f, g), the intersection multiplic-
ity of f and g. Note that (f, g)0 = +∞ if and only if f and g have a common
factor. The Milnor number µ0(f) is defined to be µ0(f) = (∂f/∂X, ∂f/∂Y )0.
Then µ0(f) = +∞ if and only if the curve f = 0 is not reduced (i.e. the power
series f has a multiple factor).

The following lemma is well known (see [3] and [6]).

Lemma 1.1. Let f = 0 and g = 0 be two curves without a common branch.
Let j(f, g) = (∂f/∂X)(∂g/∂Y )− (∂f/∂Y )(∂g/∂X). Then

(f, j(f, g))0 = µ0(f) + (f, g)0 − 1.

In particular, the curve f = 0 is not reduced if and only if the curves f = 0
and j(f, g) = 0 share a common branch.

Proof. ([5], [10], Prop. 4.1). We may assume that f(0, Y ) 6= 0. Using
Delgado’s formula ([1], Prop. 7.4.1) we get

(1) (f, j(f, g))0 = (f, ∂f/∂Y )0 + (f, g)0 − (f,X)0.

On the other hand, by Teissier’s formula ([11], Chap. II, Prop. 1.2), one can
write

(2) (f, ∂f/∂Y )0 = µ0(f) + (f,X)0 − 1

and the lemma follows.

For every branch P we denote by MP the field of fractions of the ring
C{X, Y }/P . Let f, g ∈ C{X, Y } be coprime power series. Put

D(f/g) = {P ∈ B : g 6≡ 0(mod P )}.
Then for every P ∈ D(f/g) the fraction f/g defines an element of MP which
we also denote by f/g. We put, for P ∈ D(f/g):

ordP (f/g) = (f, p)0 − (g, p)0,

where p is a generator of P . Clearly, ordP is a valuation of the field MP .
Let P1 = C ∪ {∞} and let us denote by f/g 7→ (f/g)(P ) ∈ P1 the place

associated with ordP .
Recall that (f/g)(P ) = ∞ if ordP f < ordP g < +∞ and (f/g)(P ) = 0 if

ordP g < ordP f .
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Lemma 1.2. Suppose that ordP f/g ≥ 0 for a P ∈ D(f/g) and let t0 =
(f/g)(P ). Then ordP (f − tg) = ordP g if t 6= t0 and ordP (f − t0g) > ordP g.

Proof. Obvious.

2. Result. Let f = 0 and g = 0 be two curves without a common branch.
We put F = (f, g) and j(F ) = j(f, g). Let us consider the pencil (Ft : t ∈ P1)
where Ft = f − tg for t ∈ C and F∞ = g. Let µt

0 = µ0(Ft). If j(F )(0, 0) 6= 0
then µt

0 = 0 for all t ∈ P1. In the sequel we assume that j(F )(0, 0) = 0.

Proposition 2.1. Let t ∈ P1. Then the following two conditions are
equivalent:

(i) µt
0 = +∞,

(ii) the curves j(F ) = 0 and Ft = 0 share a common branch.

Proof. We use Lemma 1.1 to power series Ft, g if t ∈ C and to power series
F∞ = g and f if t = ∞.

Proposition 2.1 implies Bertini’s theorem “the set {t∈P1: Ft is not reduced}
is finite”. Indeed, it is easy to check that

#{t ∈ P1 : µt
0 = +∞} ≤ #B(j(F )).

Let µmin
0 = inf{µt

o : t ∈ P1}. By Bertini’s theorem, µmin
0 is an integer.

Let us put

U(F ) = {P ∈ B(j(F )) : ordP f ≥ ordP g}

and
U(F )c = {P ∈ B(j(F )) : ordP f < ordP g}.

Thus U(F ) ⊂ D(f/g) and U(F )c ⊂ D(f/g) provided that µ∞0 < +∞.
For every branch P of the Jacobian curve j(F ) = 0 we denote by m(P ) the

multiplicity of P , i.e., the greatest integer m > 0 such that j(F ) ≡ 0(mod Pm).
By convention, a sum extended over an empty set equals zero.

Our main result is the following.

Theorem 2.2. With the notation introduced above
(i) if µt

0 6= +∞ for a t ∈ C, then

µt
0 − µmin

0 =
∑

P∈U(F )

m(P ) ordP (f/g − t);

(ii) if µ∞0 6= +∞, then

µ∞0 − µmin
0 = −

∑
P∈U(F )c

m(P ) ordP (f/g).
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Proof. Let us fix a t ∈ C such that µt
0 6= +∞. We have j(Ft, g) = j(f, g)

and (Ft, g)0 = (f, g)0. Applying Lemma 1.1 to Ft and g, we get

(3) µt
0 = (Ft, j(f, g))0 − (f, g)0 + 1.

Let us write

j(f, g) =
k∏

i=1

pi

with irreducible pi ∈ C{X, Y } and let Pi = (pi)C{X, Y }. Therefore (Pi)i=1....,k

is a sequence of branches of j(f, g) = 0 counted with multiplicities. Let

I = {i ∈ [1, k] : ordPi f ≥ ordPi g}
and observe that ordPi Ft = ordPi f for i 6∈ I. Then

(Ft, j(f, g))0 =
k∑

i=1

ordPi Ft =
∑
i∈I

ordPi Ft +
∑
i6∈I

ordPi f

and by (3) we get

(4) µt
0 =

∑
i∈I

ordPi Ft +
∑
i6∈I

ordPi f − (f, g)0 + 1.

If i ∈ I then by Lemma 1.2 we have ordPi Ft ≥ ordPi g with equality for
t 6= (f/g)(Pi). Using (4) we get

(5) µmin
0 =

∑
i∈I

ordPi g +
∑
i6∈I

ordPi f − (f, g)0 + 1.

and consequently

µt
0 − µmin

0 =
∑
i∈I

ordPi Ft − ordPi g =
∑
i∈I

ordPi(Ft/g)

=
∑

P∈U(F )

m(P ) ordP (f/g − t)

for Ft/g = f/g − t. We have thus proved (i).
Let us suppose that µ∞0 6= +∞. By Lemma 1.1 applied to g and f , we get

(6) µ∞0 = (g, j(f, g))0 − (f, g)0 + 1 =
∑
i∈I

ordPi g +
∑
i6∈I

ordPi g − (f, g)0 + 1.

Now, by (5) and (6), we get

µ∞0 − µmin
0 =

∑
i6∈I

ordPi g − ordPi f = −
∑
i6∈I

ordPi(f/g)

= −
∑

P∈U(F )c

m(P ) ordP (f/g)

which proves (ii).
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Remark 2.3. We can write (5) in the following form

µmin
0 =

∑
P

inf{ordP f, ordP g} − (f, g)0 + 1.

3. Description of special values. Let

Λ(F ) = {t ∈ P1 : µt
0 > µmin

0 }

be the set of special values of the pencil (Ft : t ∈ P1) (see [7] and [6]). We
put by convention (f/g)(P ) = ∞ if g ≡ 0(mod P ).

The following description of the special values is due to different authors:

Theorem 3.1. (see [9], Théorème 1, [8], p. 410–411, [1], 7.4).
We have

Λ(F ) = {(f/g)(P ) : P ∈ B(j(F ))}.

Proof. First we prove the following:

(7) {t ∈ C : µt
0 > µmin

0 } = {(f/g)(P ) : P ∈ U(F )}.

Fix t ∈ C. We will check that µt
o > µmin

0 if and only if there exists a P ∈ U(F )
such that (f/g)(P ) = t. If µt

0 = +∞ then Ft has multiple factors. Thus there
exists a branch P such that Ft ≡ 0( mod P 2). It is easy to check that P ∈ U(F )
and (f/g)(P ) = t.

Now suppose that µt
0 < +∞. According to Theorem 2.2(i), the inequality

µt
0 > µmin

0 holds if and only if there exists P ∈ U(F ) such that ordP (f − tg) >
ordP g. The last inequality is equivalent to the condition (f/g)(P ) = t. This
proves (7).

Let us check the following property

(8) µ∞0 > µmin
0 if and only if U(F )c 6= ∅.

Indeed, if µ∞0 = +∞, then there is a branch P such that g ≡ 0(mod P )
and P ∈ B(j(F )) by Proposition 2.1. Obviously f 6≡ 0(mod P ) and we get
ordP g = +∞ > ordP f . Thus P ∈ U(F )c. If µ∞0 < +∞, then (8) follows from
Theorem 2.2(ii). Theorem 3.1 follows from (7) and (8) for (f/g)(P ) = ∞ if
P ∈ U(F )c.

When studying the singularities at infinity of a polynomial in two complex
variables of degree N > 1, one considers the pencil defined by F = (f, lN ),
where l = 0 is a smooth curve which is not a component of the curve f = 0.
Clearly, µ∞0 = +∞. Using Theorem 3.1, we get

Corollary 3.2. (see [4], Proposition 2.2).

Λ(F ) ∩C = {(f/lN )(P ) : P ∈ B(j(f, l)) and ordP f/ ordP l ≥ N}.
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4. Special values and the discriminant curve. Let U, V be variables.
For every branch P of C{X, Y } we define

F (P ) = {Φ(U, V ) ∈ C{U, V } : Φ(f(X, Y ), g(X, Y )) ≡ 0(mod P )}.
Thus F (P ) is a branch of C{U, V }. Let L = (U, V ). By definition, we have
Lt = U − tV for t ∈ C and L∞ = V .

The (reduced) discriminant curve ∆F = 0 is the curve with branches F (P ),
where P runs over branches of the Jacobian curve j(F ) = 0. The description
of special values by means of the discriminant is due to Lê Dũng Tráng [6] (see
also [2]). Both authors use topological methods.

Theorem 4.1. (see [6] Proposition 3.6.4, [2] Corollary 4.7) Let t0 ∈ P1.
Then t0 is a special value of the pencil (Ft : t ∈ P1) if and only if Lt0 is
a tangent to the discriminant curve ∆F = 0. Moreover, the fiber Ft0 is not
reduced if and only if the line Lt0 = 0 is a branch of ∆F = 0.

To prove Theorem 4.1 we need the following.

Lemma 4.2. For every branch P of C{X, Y },(
f

g

)
(P ) =

(
U

V

)
(F (P )).

Proof. Let (x(T ), y(T )) ∈ C{T}2, x(0) = y(0) = 0 be a parametrization
of P . Therefore P = {h(X, Y ) : h(x(T ), y(T )) = 0} and(

f

g

)
(P ) =

f(x(T ), y(T ))
g(x(T ), y(T ))

∣∣∣∣
T=0

.

To check (4.2) it suffices to observe that

F (x(T ), y(T )) = ( f(x(T ), y(T )), g(x(T ), y(T )) )

is a parametrization of F (P ).

Now we can give a proof.

Proof of Theorem 4.1. By Theorem 3.1 and Lemma 4.2, we get

Λ(F ) =
{(

U

V

)
(F (P )) : P ∈ B(j(F ))

}
=

{(
U

V

)
(Q) : Q ∈ B(∆F )

}
.

On the other hand, it is very easy to see that (U/V )(Q) = t if and only if the
line Lt = 0 is tangent to the branch Q. This proves the first part of (4.1).

The second part of (4.1) follows from Proposition 2.1. Indeed, by (2.1)
Ft is not reduced if and only if there is a branch P ∈ B(j(F )) such that
Ft ≡ 0 (mod P ) which is equivalent to Lt ≡ 0 (mod F (P )) that is to F (P ) =
(Lt).
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